DOI QR코드

DOI QR Code

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Huang, Xiaogang (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Zhou, Zhen (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Zhu, Yazhi (Department of Structural Engineering, Tongji University) ;
  • Zhu, Dongping (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Lu, Lu (State Grid Jiangsu Economic Research Institute)
  • Received : 2017.09.20
  • Accepted : 2018.05.22
  • Published : 2018.12.31

Abstract

Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities

References

  1. Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications (3rd ed.). Boca Raton: CRC Press.
  2. Bai, Y., Teng, X., & Wierzbicki, T. (2009). On the application of stress triaxiality formula for plane strain fracture testing. Journal of Engineering Materials and Technology, 131(2), 021002. https://doi.org/10.1115/1.3078390
  3. Bai, Y., & Wierzbicki, T. (2010). Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 161(1), 1-20. https://doi.org/10.1007/s10704-009-9422-8
  4. Bao, Y. (2003). Prediction of ductile crack formation in uncracked bodies. Ph.D. Dissertation, Massachusetts Institute of Technology.
  5. Bao, Y., & Wierzbicki, T. (2004). On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46(1), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  6. Barsoum, I., & Faleskog, J. (2007). Rupture mechanisms in combined tension and shear-experiments. International Journal of Solids and Structures, 44(6), 1768-1786. https://doi.org/10.1016/j.ijsolstr.2006.09.031
  7. Barsoum, I., & Faleskog, J. (2011). Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence. International Journal of Solids and Structures, 48(6), 925-938. https://doi.org/10.1016/j.ijsolstr.2010.11.028
  8. Beese, A. M., Luo, M., Li, Y., et al. (2010). Partially coupled anisotropic fracture model for aluminum sheets. Engineering Fracture Mechanics, 77(7), 1128-1152. https://doi.org/10.1016/j.engfracmech.2010.02.024
  9. Bomarito, G., & Warner, D. (2015). Micromechanical investigation of ductile failure in al 5083-h116 via 3d unit cell modeling. Journal of the Mechanics and Physics of Solids, 74, 97-110. https://doi.org/10.1016/j.jmps.2014.10.007
  10. Bridgman, P. W. (1964). Studies in large plastic flow and fracture. Cambridge: Harvard University Press.
  11. Dunand, M., & Mohr, D. (2011). Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. Engineering Fracture Mechanics, 78(17), 2919-2934. https://doi.org/10.1016/j.engfracmech.2011.08.008
  12. Ghahremaninezhad, A., & Ravi-Chandar, K. (2013). Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading. International Journal of Fracture, 180(1), 23-39. https://doi.org/10.1007/s10704-012-9793-0
  13. Gologanu, M., Leblond, J. B., & Devaux, J. (1993). Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities. Journal of the Mechanics and Physics of Solids, 41(11), 1723-1754. https://doi.org/10.1016/0022-5096(93)90029-F
  14. Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99(1), 2-15. https://doi.org/10.1115/1.3443401
  15. Hooputra, H., Gese, H., Dell, H., et al. (2004). A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness, 9(5), 449-464. https://doi.org/10.1533/ijcr.2004.0289
  16. Huang, B., Wang, C., Chen, Q., et al. (2013). Low-cycle fatigue test of Q235 steel buckling-restrained braces. China Civil Engineering Journal, 6, 009.
  17. Jia, L. J., Ge, H., Shinohara, K., et al. (2016). Experimental and numerical study on ductile fracture of structural steels under combined shear and tension. Journal of Bridge Engineering, 21(5), 04016008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000845
  18. Jia, L. J., & Kuwamura, H. (2013). Ductile fracture simulation of structural steels under monotonic tension. Journal of Structural Engineering, 140(5), 04013115.
  19. Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  20. Jones, S. L., Fry, G. T., & Engelhardt, M. D. (2002). Experimental evaluation of cyclically loaded reduced beam section moment connections. Journal of Structural Engineering, 128(4), 441-451. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(441)
  21. Kang, L., Ge, H., & Fang, X. (2016). An improved ductile fracture model for structural steels considering effect of high stress triaxiality. Construction and Building Materials, 115, 634-650. https://doi.org/10.1016/j.conbuildmat.2016.04.083
  22. Kang, L., Ge, H., & Kato, T. (2015). Experimental and ductile fracture model study of single-groove welded joints under monotonic loading. Engineering Structures, 85, 36-51. https://doi.org/10.1016/j.engstruct.2014.12.006
  23. Kanvinde, A. (2016). Predicting fracture in civil engineering steel structures: State of the art. Journal of Structural Engineering, 143, 03116001.
  24. Kanvinde, A. M., & Deierlein, G. G. (2004). Micromechanical simulation of earthquake-induced fracture in steel structures. Stanford, California: Blume Center TR145, Stanford University.
  25. Kanvinde, A. M., & Deierlein, G. G. (2006). Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels. Journal of Structural Engineering, 132(12), 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907)
  26. Kanvinde, A. M., & Deierlein, G. G. (2007). Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue. Journal of Engineering Mechanics, 133(6), 701-712. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(701)
  27. Li, H., Fu, M., Lu, J., & Yang, H. (2011). Ductile fracture: Experiments and computations. International Journal of Plasticity, 27(2), 147-180. https://doi.org/10.1016/j.ijplas.2010.04.001
  28. Li, W., Liao, F., Zhou, T., et al. (2016). Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle. Journal of Constructional Steel Research, 123, 1-17. https://doi.org/10.1016/j.jcsr.2016.04.018
  29. Li, C., Zhou, Z., Zhu, Y., et al. (2017). A unified damage factor model for ductile fracture of steels with different void growth and shrinkage rates. Fatigue & Fracture of Engineering Materials & Structures, 41, 1132-1145.
  30. Lou, Y., Chen, L., Clausmeyer, T., et al. (2017). Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. International Journal of Solids and Structures, 112, 169-184. https://doi.org/10.1016/j.ijsolstr.2016.11.034
  31. Madou, K., & Leblond, J. B. (2012a). A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids-I: Limit-analysis of some representative cell. Journal of the Mechanics and Physics of Solids, 60(5), 1020-1036. https://doi.org/10.1016/j.jmps.2011.11.008
  32. Madou, K., & Leblond, J. B. (2012b). A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids-II: Determination of yield criterion parameters. Journal of the Mechanics and Physics of Solids, 60(5), 1037-1058. https://doi.org/10.1016/j.jmps.2012.01.010
  33. Mahin, S. A. (1998). Lessons from damage to steel buildings during the Northridge earthquake. Engineering Structures, 20(4-6), 261-270. https://doi.org/10.1016/S0141-0296(97)00032-1
  34. Malcher, L., Andrade Pires, F. M., & Cesar De Sa, J. M. A. (2012). An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 30, 81-115.
  35. Momenzadeh, S., Kazemi, M. T., & Asl, M. H. (2017). Seismic performance of reduced web section moment connections. International Journal of Steel Structures, 17(2), 413-425. https://doi.org/10.1007/s13296-017-6004-x
  36. Myers AT, Deierlein GG, Kanvinde AM. (2009). Testing and probabilistic simulation of ductile fracture initiaion in structural steel. Blume Cent Rep.
  37. Nahshon, K., & Hutchinson, J. W. (2008). Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 27(1), 1-17. https://doi.org/10.1016/j.euromechsol.2007.08.002
  38. Nakashima, M., Inoue, K., & Tada, M. (1998). Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake. Engineering Structures, 20(4-6), 271-281. https://doi.org/10.1016/S0141-0296(97)00019-9
  39. Nielsen, K. L., Dahl, J., & Tvergaard, V. (2012). Collapse and coalescence of spherical voids subject to intense shearing: Studied in full 3D. International Journal of Fracture, 177(2), 97-108. https://doi.org/10.1007/s10704-012-9757-4
  40. Oh, C. S., Kim, N. H., Kim, Y. J., et al. (2011). A finite element ductile failure simulation method using stress-modified fracture strain model. Engineering Fracture Mechanics, 78(1), 124-137. https://doi.org/10.1016/j.engfracmech.2010.10.004
  41. Papasidero, J., Doquet, V., & Mohr, D. (2014). Determination of the effect of stress state on the onset of ductile fracture through tension-torsion experiments. Experimental Mechanics, 54(2), 137-151. https://doi.org/10.1007/s11340-013-9788-4
  42. Qi, L., Xue, J., & Leon, R. T. (2017). Experimental and analytical investigation of transition steel connections in traditional-style buildings. Engineering Structures, 150, 438-450. https://doi.org/10.1016/j.engstruct.2017.07.062
  43. Rice, J. R., & Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  44. Scheyvaerts, F., Onck, P. R., Tekoglu, C., et al. (2011). The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. Journal of the Mechanics and Physics of Solids, 59(2), 373-397. https://doi.org/10.1016/j.jmps.2010.10.003
  45. Smith, C., Kanvinde, A., & Deierlein, G. (2017). A local criterion for ductile fracture under low-triaxiality axisymmetric stress states. Engineering Fracture Mechanics, 169, 321-335. https://doi.org/10.1016/j.engfracmech.2016.10.011
  46. Wang, Y., Zhou, H., Shi, Y., et al. (2011). Fracture prediction of welded steel connections using traditional fracture mechanics and calibrated micromechanics based models. International Journal of Steel Structures, 11(3), 351-366. https://doi.org/10.1007/s13296-011-3010-2
  47. Wierzbicki, T., Xue, L. (2005). On the effect of the third invariant of the stress deviator on ductile fracture. Impact and Crashworthiness Laboratory, Technical report, 136.
  48. Xue, L. (2008). Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics, 75(11), 3343-3366. https://doi.org/10.1016/j.engfracmech.2007.07.022
  49. Xue, Z., Faleskog, J., & Hutchinson, J. W. (2013). Tension-torsion fracture experiments-Part II: Simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain. International Journal of Solids and Structures, 50(25), 4258-4269. https://doi.org/10.1016/j.ijsolstr.2013.08.028
  50. Xue, Z., Pontin, M. G., Zok, F. W., et al. (2010). Calibration procedures for a computational model of ductile fracture. Engineering Fracture Mechanics, 77(3), 492-509. https://doi.org/10.1016/j.engfracmech.2009.10.007
  51. Zhou, Z., Xie, Q., Lei, X. C., et al. (2015). Experimental investigation of the hysteretic performance of dual-tube self-centering buckling-restrained braces with composite tendons. Journal of Composites for Construction, 19(6), 04015011. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000565
  52. Zhu, Y., & Engelhardt, M. D. (2018a). A nonlocal triaxiality and shear dependent continuum damage model for finite strain elastoplasticity. European Journal of Mechanics-A/Solids, 71, 16-33. https://doi.org/10.1016/j.euromechsol.2018.03.012
  53. Zhu, Y., & Engelhardt, M. D. (2018b). Prediction of ductile fracture for metal alloys using a shear modified void growth model. Engineering Fracture Mechanics, 190, 491-513. https://doi.org/10.1016/j.engfracmech.2017.12.042

Cited by

  1. Effects of the stress state on plastic deformation and ductile failure: Experiment and numerical simulation using a newly designed tension‐shear specimen vol.42, pp.9, 2018, https://doi.org/10.1111/ffe.13084