Effect of Oxygen and Shear Stress on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Yang, Li (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Zhang, Xu (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Tan, Wen-Song (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Published : 2008.04.30

Abstract

Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effects on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only $(1.22{\pm}0.02){\times}10^6 Da$. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of $(2.19{\pm}0.05){\times}10^6 Da$ at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

Keywords

References

  1. Armstrong, D. C. and M. R. Johns. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. Environ. Microbiol. 63: 2759-2764
  2. Armstrong, D. C., M. J. Cooney, and M. R. Johns. 1997. Growth and amino acid requirement of hyaluronic acid producing Streptococcus zooepidemicus. Appl. Microbiol. Biotechnol. 47: 309-312
  3. Badino, Jr. A. C., M. C. R. Facciotti, and W. Schmidell. 2000. Improving kLa determination in fungal fermentation, taking into account electrode response time. J. Chem. Technol. Biotechnol. 75: 469-474 https://doi.org/10.1002/1097-4660(200006)75:6<469::AID-JCTB236>3.0.CO;2-4
  4. Baggenstoss, B. A. and P. H. Weigel. 2006. Size exclusion chromatography-multiangle laser light scattering analysis of hyaluronan size distribution made by membrane-bound hyaluronan synthase. Anal. Biochem. 352: 243-251 https://doi.org/10.1016/j.ab.2006.01.019
  5. Bandyopadhyay, B. and A. E. Humphrey. 1967. Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation system. Biotechnol. Bioeng. 9: 533-544 https://doi.org/10.1002/bit.260090408
  6. Bitter, T. and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-333 https://doi.org/10.1016/0003-2697(62)90095-7
  7. Blank, L. M., R. L. McLaughlin, and L. K. Nielsen. 2005. Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnol. Bioeng. 90: 685-693 https://doi.org/10.1002/bit.20466
  8. Cleary, P. P. and A. Larkin. 1979. Hyaluronic acid capsule: Strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140: 1090-1097
  9. Crater, D. L. and I. van de Rijn. 1995. Hyaluronic acid synthesis operon (has) expression in group A Streptococci. J. Biol. Chem. 270: 18452-18458 https://doi.org/10.1074/jbc.270.31.18452
  10. Fischer, E., P. T. Callaghan, F. Heatley, and J. E. Scott. 2002. Shear flow affects secondary and tertiary structures in hyaluronan solution as shown by rheo-NMR. J. Mol. Struc. 602-603: 303- 311 https://doi.org/10.1016/S0022-2860(01)00733-5
  11. Fong Chong, B., L. M. Blank, R. McLaughlin, and L. K. Nielsen. 2005. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 66: 341-351 https://doi.org/10.1007/s00253-004-1774-4
  12. Fong Chong, B. and L. K. Nielsen. 2003. Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochem. Eng. J. 16: 153-162 https://doi.org/10.1016/S1369-703X(03)00031-7
  13. Gao, H. J., J. Chen, G. C. Du, Y. F. Zhang, J. C. Chen, and G. Q. Chen. 2003. Effect of agitation and mixing hyaluronic acid production by Streptococcus zooepidemicus. J. Chem. Ind. Eng. 54: 350-356
  14. Grootveld, M., E. B. Henderson, A. Farrell, D. R. Blake, H. G. Parkes, and P. Haycock. 1991. Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal lowmolecular- mass metabolites by proton-n.m.r. spectroscopy. Biochem. J. 273: 459-467 https://doi.org/10.1042/bj2730459
  15. Hasegawa, S., M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe. 1999. Productivity of concentrated hyaluronic acid using a maxblend fermentor. J. Biosci. Bioeng. 88: 68-71 https://doi.org/10.1016/S1389-1723(99)80178-9
  16. Huang, W.-C., S.-J. Chen, and T.-L. Chen. 2006. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochem. Eng. J. 32: 239-243 https://doi.org/10.1016/j.bej.2006.10.011
  17. Jacques, M. and L. Graham. 1989. Improved preservation of bacterial capsule for electron microscopy. J. Electron Microsc. Tech. 11: 167-169 https://doi.org/10.1002/jemt.1060110212
  18. Johns, M. R., L.-T. Goh, and A. Oeggerli. 1994. Effect of pH, agitation and aeration on hyaluronic acid produced by Streptococcus zooepidemicus. Biotechnol. Lett. 16: 507-512 https://doi.org/10.1007/BF01023334
  19. Kang, S.-W., E. R. Cho, and B.-S. Kim. 2005. PLGA microspheres in hyaluronic acid gel as a potential bulking agent for urologic and dermatologic injection therapies. J. Microbiol. Biotechnol. 15: 510-518
  20. Kim, H. M., S. W. Kim, H. J. Hwang, M. K. Park, Y. A.-G. Mahmoud, J. W. Choi, and J. W. Yun. 2006. Influence of agitation intensity and aeration rate on production of antioxidative exopolysaccharides from submerged mycelial culture of Ganoderma resinaceum. J. Microbiol. Biotechnol. 16: 1240-1247
  21. Kim, S.-J., S.-Y. Park, and C.-W. Kim. 2006. A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 16: 1849-1855
  22. Kim, J.-H., S.-J. Yoo, D.-K. Oh, Y.-G. Kweon, D.-W. Park, C.-H. Lee, and G.-H. Gil. 1996. Selection of a Streptococcus equimutant and optimization of culture conditions for the production of molecular weight hyaluronic acid. Enzyme Microb. Technol. 19: 440-445 https://doi.org/10.1016/S0141-0229(96)00019-1
  23. Kogan, G., L. Šoltes, R. Stern, and P. Gemeiner. 2007. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17-25 https://doi.org/10.1007/s10529-006-9219-z
  24. Laurent, T. C., M. Ryan, and A. Pietruszkiewicz. 1960. Fraction of hyaluronic acid. The polydispersity of hyaluronic acid from the bovine virtreous body. Biochim. Biophys. Acta 42: 476-485 https://doi.org/10.1016/0006-3002(60)90826-X
  25. Miller, G. L. 1959. Use of dinitrosalicylic reagent for determination of reducing sugars. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  26. Nickel, V., S. Prehm, M. Lansing, A. Mausolf, A. Podbielski, J. Deutscher, and P. Prehm. 1998. An ectoprotein kinase group C streptococcus binds hyaluronan and regulates capsule formation. J. Biol. Chem. 273: 23668-23673 https://doi.org/10.1074/jbc.273.37.23668
  27. Richard, A. and A. Margaritis. 2002. Production and mass transfer characteristics of non-Newtonian biopolymer for biomedical applications. Crit. Rev. Biotechnol. 22: 355-374 https://doi.org/10.1080/07388550290789559
  28. Scott, J. E. Secondary and tertiary structures of hyaluronan in aqueous solution. Some biological consequences. Available at: http://www.glycoforum.gr.jp/science/hyaluronan/HA02/HA02E.html
  29. Song, S. K., Y.-S. Jeong, P.-H. Kim, and G.-T Chun. 2006. Effect of dissolved oxygen level on avermitilis B1a production by Streptomyces avermitilis in computer-controlled bioreactor cultures. J. Microbiol. Biotechnol. 16: 1690-1698
  30. Van de Rijn, I. 1983. Streptococcal hyaluronic acid: Proposed mechanisms of degradation and loss of synthesis during stationary phase. J. Bacteriol. 156: 1059-1065
  31. Yamada, T. and T. Kawasaki. 2005. Microbial synthesis of hyaluronan and chitin: New approaches. J. Biosci. Bioeng. 99: 521-528 https://doi.org/10.1263/jbb.99.521