• Title/Summary/Keyword: shear force transfer

Search Result 113, Processing Time 0.035 seconds

Evaluation of Diaphragm Effect for Hybrid Structural Systems Using Finite Element Method (유한요소법을 이용한 주상복합건물의 강막작용에 의한 영향 평가)

  • 김희철;최성우;홍원기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.19-32
    • /
    • 2003
  • The structural system of a hybrid building is composed of upper shear wall which resist lateral force by bending deformation and lower frame which resist lateral force by shear deformation. A deep transfer girder is used to transfer gravity load safely from super structures to structural frame beneath. Because of the vertical discontinuity, a building with transfer girder must be analyzed by dynamic analysis. However, this structural system has many problems in performing dynamic analysis that cannot be solved by general analysis procedure. The slabs In transfer floor are considered as either a Plate element or a rigid diaphragm in finite element analysis without appropriate evaluation of their characteristics. Therefore, a reasonable analysis method is proposed in this study by evaluating the diaphragm effect of a hybrid structure system.

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

A Comparative Study on Design by Actual Stress and Design by Member Strength in Bolt Connections (철골볼트 접합부 존재응력설계와 부재내력설계의 비교 연구)

  • 이만승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.94-101
    • /
    • 1999
  • There are two methods commonly used in design of splice plate connection of frame structure. The one is Design by Actual Stress which can sufficiently transfer actual force to an adjacent member using rows of bolts. The other is Design by Member Strength which is able to transfer total allowable stress of effective section area to a connected member. In real design, as a matter of convenience, Standard Connection Drawings have used according to Design by Member Strength. But this method underestimate connection force in shear connection where large connection moment occured. In this study, these Design methods are compared by connection moment in shear connections. and the adequate use of them are recommended. Also In order to evaluate more accurately the actual stress of splice plate of flange on moment. connection, a new calculation method of it is recommended.

  • PDF

Transfer Length of the Soil Nail Induced by the Shear Deformation (전단변형에 따른 쏘일네일의 전이길이)

  • You, Min Ku;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.61-73
    • /
    • 2018
  • When the shear deformation occurs on the slope reinforced with soil nail, a passive earth pressure is induced on the ground around the soil nail and the increase of shear deformation causes the earth pressure variation of the ground and the deformation and member force change of the soil nail. In this study, the shear behavior of the soil nail was analyzed experimentally by inducing the shear deformation in the vertical direction of the soil nail using a large-scale direct shear test equipment and it was verified through numerical analysis. The shear test was performed on the bonded length (6D, 8D, 10D and 12D) of the soil nail separated from the shear surface. As a result, it was observed that the continuous increase of the shear deformation caused the damage of the grout and the effect according to the bonded length was analyzed. Through the model test and the numerical analysis, it was confirmed that the transfer length of the soil nail was 0.2~0.22m, which is larger than 0.1m suggested in the previous study, and the shear zone was in the range of 0.6m from the shear surface.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

Estimation Model of Shear Transfer Strength for Uncracked Pull-Off Test Specimens based on Compression Field Theory (비균열 인장재하 시험체의 압축장 이론에 기반한 전단전달강도 산정모델)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.101-111
    • /
    • 2021
  • Two different types of shear-friction tests were classified by external loadings and referred to as a push-off and a pull-off test. In a pull-off test, a tension force is applied in the transverse direction of the test specimen to produce a shear stress at the shear plane. This paper presents a method to evaluate shear transfer strengths of uncracked pull-off specimens. The method is based on the compression field theory and different constitutive laws are applied in some ways to gain accurate shear strengths considering softening effects of concrete struts based on Modified Compression Field Theory (MCFT) and Softened Truss Model (STM). The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with the predicted values. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked pull-off test specimens. A shear strength evaluation formula considering the effective compressive strength of a concrete strut was proposed, and the applicability of the proposed formula was verified by comparing with the experimental results in the literature.

The Response of a Single Pile and Pile Groups to Tunnelling Performed in Weathered Rock (풍화암에서 실시된 터널굴착으로 인한 단독말뚝 및 군말뚝의 거동)

  • Lee, Cheol Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.199-210
    • /
    • 2012
  • The effects of tunnelling in weak weathered rock on the behaviour of a pre-existing single pile and pile groups ($3{\times}3$ and $5{\times}5$ pile groups) above a tunnel have been studied by carrying out three-dimensional (3D) elasto-plastic numerical analyses. Numerical modelling of such effects considers the response of the single pile and pile groups in terms of tunnelling-induced ground and pile settlement as well as changes of the shear transfer mechanism at the pile-soil interface due to tunnelling. Due to changes in the relative shear displacement between the pile and the soil at the pile-soil interface with tunnel advancement, the shear stresses and axial pile force distributions along the pile change drastically. Based on the computed results, upward shear stresses are induced up to about Z/L=0.775 from the pile top, while downward shear stresses are mobilised below Z/L=0.775, resulting in a reduction in the axial pile force distribution with depth equivalent to a net increase in the tensile force on the pile. A maximum tensile force of about $0.36P_a$ developed on the single pile solely due to tunnelling, where $P_a$ is the service axial pile loading prior to tunnelling. The degree of interface shear strength mobilisation at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. Overall it has been found that the larger the number of piles, the greater is the effect of tunnelling on the piles in terms of pile settlement, while changes of the axial pile forces for the piles in the groups are smaller than for a single pile due to the shielding effect. The reduction of apparent allowable pile capacity due to tunnelling-induced pile head settlement was significant, in particular for piles inside the groups.

Shear Resistance Capacity of Precast Post-tensioned Concrete Beam-Column Connection (프리캐스트 포스트텐션 콘크리트 보-기둥 접합부의 전단성능)

  • 조경호;이종규;최광호;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.769-774
    • /
    • 2000
  • The first thing in developing precast post-tensioned concrete frame system verify the shear resistance capacity of the beam-column connection at which the transfer of member forces become discontinuous. Complying with the necessity of such experimental research, shear tests have been performed for six test specimens which were cast and cured at Dong-Ah Concrete Manufacturing Company and post-tensioning at Concrete Laboratory of Inha University. Shear key and magnitude of post-tensioned force are taken test variables. From the test results, it has been observed that the shear resistance of the specimens attained to higher values than those of theoritical calculations based on the shear friction with shear friction coefficient being 0.6.

  • PDF