DOI QR코드

DOI QR Code

Estimation Model of Shear Transfer Strength for Uncracked Pull-Off Test Specimens based on Compression Field Theory

비균열 인장재하 시험체의 압축장 이론에 기반한 전단전달강도 산정모델

  • 김민중 (순천제일대학교 스마트건설환경과) ;
  • 이기열 (전남대학교 조경학과)
  • Received : 2020.09.01
  • Accepted : 2020.11.24
  • Published : 2021.04.01

Abstract

Two different types of shear-friction tests were classified by external loadings and referred to as a push-off and a pull-off test. In a pull-off test, a tension force is applied in the transverse direction of the test specimen to produce a shear stress at the shear plane. This paper presents a method to evaluate shear transfer strengths of uncracked pull-off specimens. The method is based on the compression field theory and different constitutive laws are applied in some ways to gain accurate shear strengths considering softening effects of concrete struts based on Modified Compression Field Theory (MCFT) and Softened Truss Model (STM). The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with the predicted values. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked pull-off test specimens. A shear strength evaluation formula considering the effective compressive strength of a concrete strut was proposed, and the applicability of the proposed formula was verified by comparing with the experimental results in the literature.

전단마찰 시험체는 재하형태에 따라 압축재하와 인장재하 시험으로 구분된다. 인장재하 시험의 경우에는 외력으로 작용하는 수직방향 인장력에 의하여 전단응력 및 수직방향 인장응력이 유발된다. 이 연구에서는 압축장 이론을 이용하여 인장재하 시험체의 전단전달강도를 평가하였으며, 2축-응력 상태의 콘크리트 최대 압축강도의 변화를 고려하기 위하여 수정압축장이론, 연화트러스모델의 구성방정식을 사용하였다. 타당성 검증을 위하여 과거 연구자들에 의해 수행된 직접전단강도 실험값들과 압축장 이론을 이용하여 구한 값들을 비교한 결과, 비균열 인장재하 시험체의 경우 예측값과 실측치가 대체적으로 잘 일치함을 확인하였다. 또한 콘크리트 스트럿의 유효압축강도를 고려한 전단강도 평가식을 제안하고, 기존 문헌에 수록된 실험결과와 비교함으로써 제안식의 적용 가능성을 검증하였다.

Keywords

References

  1. Birkeland, P. W. and Birkeland, H. W. (1966). "Connections in precast concrete construction." ACI Journal, Vol. 63, No. 3, pp. 345-368.
  2. Eurocode 2 (1992). Design of concrete structures-part I, general rules and rules for buildings, British Standard Institution, London.
  3. Hofbeck, J. A., Ibrahim, I. O. and Mattock, A. H. (1969). "Shear transfer in reinforced concrete." ACI Journal, Vol. 66, No. 2, pp. 119-128.
  4. Hsu, T. T. C. (1993). Unified theory of reinforced concrete, CRC Press, Boca Raton, Fla.
  5. Hsu, T. T. C., Mau, S. T. and Chen, B. (1987). "Theory of shear transfer strength of reinforced concrete." ACI Structural Journal, Vol. 84, No. 2, pp. 149-160.
  6. Kim, M. J., Lee, G. Y., Lee, J. S. and Kim, W. (2012). "Bi-axial stress field analysis on shear-friction in RC members." Journal of the Korea Concrete Institute, Vol. 24, No. 1, pp. 25-35 (in Korean). https://doi.org/10.4334/JKCI.2012.24.1.025
  7. Kim, W., Rhee. C. S. and Jeong, J. P. (2006). "Shear behavioral model based on shear deformation compatibility." Journal of the Korea Concrete Institute, Vol. 18, No. 3, pp. 379-388 (in Korean). https://doi.org/10.4334/JKCI.2006.18.3.379
  8. Mattock, A. H. and Hawkins, N. M. (1972). "Shear transfer in reinforced concrete-recent research." PCI Journal, Vol. 17, No. 2, pp. 55-75. https://doi.org/10.15554/pcij.03011972.55.75
  9. Ministry of Land, Infrastructure and Transport (MOLIT) (2012). Concrete structural design code, pp. 128-130 (in Korean).
  10. Vecchio, F. J. and Collins, M. P. (1986). "The modified compression field theory for reinforced concrete elements subjected to shear." ACI Journal, Vol. 83, No. 2. pp. 219-231.