• Title/Summary/Keyword: sharp bounds

Search Result 47, Processing Time 0.027 seconds

COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASS FOR SPIRALLIKE FUNCTIONS DEFINED BY MEANS OF GENERALIZED ATTIYA-SRIVASTAVA OPERATOR

  • Yavuz, Tugba
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.703-712
    • /
    • 2016
  • In this article, we derive a sharp estimates for the Taylor-Maclaurin coefficients of functions in some certain subclasses of spirallike functions which are defined by generalized Srivastava-Attiya operator. Several corollaries and consequences of the main result are also considered.

Strong Roman Domination in Grid Graphs

  • Chen, Xue-Gang;Sohn, Moo Young
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.515-523
    • /
    • 2019
  • Consider a graph G of order n and maximum degree ${\Delta}$. Let $f:V(G){\rightarrow}\{0,1,{\cdots},{\lceil}{\frac{{\Delta}}{2}}{\rceil}+1\}$ be a function that labels the vertices of G. Let $B_0=\{v{\in}V(G):f(v)=0\}$. The function f is a strong Roman dominating function for G if every $v{\in}B_0$ has a neighbor w such that $f(w){\geq}1+{\lceil}{\frac{1}{2}}{\mid}N(w){\cap}B_0{\mid}{\rceil}$. In this paper, we study the bounds on strong Roman domination numbers of the Cartesian product $P_m{\square}P_k$ of paths $P_m$ and paths $P_k$. We compute the exact values for the strong Roman domination number of the Cartesian product $P_2{\square}P_k$ and $P_3{\square}P_k$. We also show that the strong Roman domination number of the Cartesian product $P_4{\square}P_k$ is between ${\lceil}{\frac{1}{3}}(8k-{\lfloor}{\frac{k}{8}}{\rfloor}+1){\rceil}$ and ${\lceil}{\frac{8k}{3}}{\rceil}$ for $k{\geq}8$, and that both bounds are sharp bounds.

THE MULTIPLICATIVE VERSION OF WIENER INDEX

  • Hua, Hongbo;Ashrafi, Ali Reza
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.533-544
    • /
    • 2013
  • The multiplicative version of Wiener index (${\pi}$-index), proposed by Gutman et al. in 2000, is equal to the product of the distances between all pairs of vertices of a (molecular) graph G. In this paper, we first present some sharp bounds in terms of the order and other graph parameters including the diameter, degree sequence, Zagreb indices, Zagreb coindices, eccentric connectivity index and Merrifield-Simmons index for ${\pi}$-index of general connected graphs and trees, as well as a Nordhaus-Gaddum-type bound for ${\pi}$-index of connected triangle-free graphs. Then we study the behavior of ${\pi}$-index upon the case when removing a vertex or an edge from the underlying graph. Finally, we investigate the extremal properties of ${\pi}$-index within the set of trees and unicyclic graphs.

A CLASS OF COMPLETELY MONOTONIC FUNCTIONS INVOLVING DIVIDED DIFFERENCES OF THE PSI AND TRI-GAMMA FUNCTIONS AND SOME APPLICATIONS

  • Guo, Bai-Ni;Qi, Feng
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-667
    • /
    • 2011
  • A class of functions involving divided differences of the psi and tri-gamma functions and originating from Kershaw's double inequality are proved to be completely monotonic. As applications of these results, the monotonicity and convexity of a function involving the ratio of two gamma functions and originating from the establishment of the best upper and lower bounds in Kershaw's double inequality are derived, two sharp double inequalities involving ratios of double factorials are recovered, the probability integral or error function is estimated, a double inequality for ratio of the volumes of the unit balls in $\mathbb{R}^{n-1}$ and $\mathbb{R}^n$ respectively is deduced, and a symmetrical upper and lower bounds for the gamma function in terms of the psi function is generalized.

MONOTONICITY CRITERION AND FUNCTIONAL INEQUALITIES FOR SOME q-SPECIAL FUNCTIONS

  • Mehrez, Khaled
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.133-147
    • /
    • 2021
  • Our aim in this paper is to derive several new monotonicity properties and functional inequalities of some functions involving the q-gamma, q-digamma and q-polygamma functions. More precisely, some classes of functions involving the q-gamma function are proved to be logarithmically completely monotonic and a class of functions involving the q-digamma function is showed to be completely monotonic. As applications of these, we offer upper and lower bounds for this special functions and new sharp upper and lower bounds for the q-analogue harmonic number harmonic are derived. Moreover, a number of two-sided exponential bounding inequalities are given for the q-digamma function and two-sided exponential bounding inequalities are then obtained for the q-tetragamma function.

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • Gochhayat, Priyabrat;Prajapati, Anuja
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.455-472
    • /
    • 2022
  • For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

On a Class of Analytic Functions Related to the Starlike Functions

  • Gao, Chunyi;Zhou, Shiqiong
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper we discuss a class of analytic functions related to the starlike functions in the unit disk. We prove that this class belongs to the class of close-to-convex functions, we obtain the sharp coefficient upper bounds and distortion theorem of this class, we also get the convexity radius of this class.

  • PDF

On Estimating Burr Type XII Parameter Based on General Type II Progressive Censoring

  • Kim Chan-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • This article deals with the problem of estimating parameters of Burr Type XII distribution, on the basis of a general progressive Type II censored sample using Bayesian viewpoints. The maximum likelihood estimator does not admit closed form but explicit sharp lower and upper bounds are provided. Assuming squared error loss and linex loss functions, Bayes estimators of the parameter k, the reliability function, and the failure rate function are obtained in closed form. Finally, a simulation study is also included.

CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE CHEBYSHEV POLYNOMIALS

  • BULUT, Serap;MAGESH, Nanjundan;BALAJI, Vittalrao Kupparao
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • In this paper, we obtain initial coefficient bounds for an unified subclass of analytic functions by using the Chebyshev polynomials. Furthermore, we find the Fekete-$Szeg{\ddot{o}}$ result for this class. All results are sharp. Consequences of the results are also discussed.