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On Estimating Burr Type XII Parameter Based on
General Type II Progressive Censoring

Chansoo Kim?l

Abstract

This article deals with the problem of estimating parameters of Burr Type XII
distribution, on the basis of a general progressive Type II censored sample using
Bayesian viewpoints. The maximum likelihood estimator does not admit closed
form but explicit sharp lower and upper bounds are provided. Assuming squared
error loss and linex loss functions, Bayes estimators of the parameter k, the
reliability function, and the failure rate function are obtained in closed form.
Finally, a simulation study is also included.

Keywords : Burr Type XII distribution; General progressive Type II censoring;
HPD credible interval; Linex loss.

1. Introduction

The two parameter Burr Type XII distribution{which is denoted by BurrXI(c, k)
was first introduced in the literature in Burr (1942). Its capacity to assume
various shapes often permits a good fit when used to describe biological, clinical
or other experimental data. It has also been applied in areas of quality control,
reliability, duration and failure time modelling.

The probability density function(p.d.f), cumulative distribution function(c.d.f),
reliability function and failure rate of the BurrXIl(e, k) distribution are given

respectively by
—(k+1)

fla)= ckzt (1 +2°) ,z>0,k>0,c>0, 1)
Flz)=1-(1+29 k,
Rt)= (1+1497F,
and
kct®™ !
hit) = ———.
W= T

In many life test studies, it is common that the lifetimes of test units may not
be able to record exactly. For example, in the Type II censoring, the test
terminates after a predetermined number of failure occurred in order to save time
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or cost. Furthermore, some test units may have to be removed at different stages
in the study for various reasons. This would lead to progressive censoring.
Progressive Type II censored sampling is an important method of obtaining data
in lifetime studies. Live units removed early on can be readily used in other tests,
thereby saving cost to the experimenter, and a compromise can be achieved
between time consumption and the observation of some extreme values. Although
censoring occurs frequently in many applications, there are relatively few work on
it. Some early work can be found in Cohen (1963), Mann (1971), Thomas and
Wilson (1972), Viveros and Balakrishnan (1994), Balakrishnan and Sandhu (1996),
Balakrishnan and Aggarwala (2000), and Fernandez (2004).

Let us consider the following progressive Type II censoring scheme which was
generalized by Balakrishnan and Sandhu (1996). Suppose n randomly selected
units were placed on a life test; the first r failure times, X,,---, X, are not

observed; at time X, ,,, R.,., units are removed from the test randomly; at time
Xr+2’ R

T

+2 units are removed from the test randomly, so on. Finally, at the time
of the mth failure, X,,, the experiment is terminated and the remaining &, units
are removed from the test. Therefore, X,,, <---< X, are the lifetimes of the
completely observed units to fail and R,,,,---, R, are the number of units
withdrawn from the test at these failure times. At (i +1)th failure, there are n,

units on test where
n=n—i— Y, R i=r+1,--,m—1.
j=r+1

The R;’s, m and r are prespecified integers which must satisfy the following
conditions:

0<r<m<n 0< R <n,_,—1for i=r+1,--,m—1 with n, =n—r
and R, =n, _;—1.

In the next section, we deal with the problem of estimating the parameter k,
the reliability function and the failure rate function of BurrXIl(c, k) under a
squared error loss(SEL) and linex loss(LL) functions. The prior distribution for the
parameter of the model has been taken as a natural conjugate prior.

The SEL and linex loss functions are the following forms:

L(6,0)=(6-6)?
L(0,0) = b= —a(h—0))~1), a =0, b> 0, @)
where a and b are shape and scale parameters of the loss function, respectively.

One of the most popular asymmetric loss function is the linex loss function
which is introduced by Vraian (1975) and further properties of this loss function
have been investigated by Zellner (1986). For a small values of a (near to zero),
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the linex loss function is same as SEL and for choice of negative or positive
values of a, it gives more weight to overestimation or underestimation.(For details
see Zellner (1986))

Section 2 is considered a general progressive Type II censoring scheme and the
problem of MLE and a Bayes estimation of the Burr Type XII distribution.
Subsection 2.1 concerned with ML estimation. A Bayesian approach to estimation
under SEL and linex loss function is presented in subsection 2.2. Finally, a
simulation study is given in Section 3.

2. Estimation based on general progressive samples

Suppose that n randomly selected units from BurrXI(c, k) population, where ¢
is known and k is unknown, are put on test under a general progressive Type II

censoring scheme. Let z= (z,,,:-,z,,) be the observed sample.
The likelihood function of k is then
1 m—1 m
L) = el T |1, O TT £ (i) ()1 )
T!(n—T)! ji=r I i=r+1

In accordance with (1) and (3), the likelihood becomes proportional to
Liklz)oc k™ "(1— exp(— kq)) exp(— kw), (4)

where g is the observed value of @=log(1+z°,,) and w is the observed value

m

of the statistic W(X)= Y, (B +1)log(1+a).

i=r+1
2.1. Maximum likelihood estimation

The maximum likelihood estimator(MLE) of k, denoted by I;, can be derived by
solving the equation
, _ ologL(klz) rq m—r
L (klz) = —=—r=== P o B N Al 5)

Obtaining a closed form expression for & is not possible. The solution could be
obtained by using Newton’s method. If r= 0, then

k= =

m

E (R::+ Nog (1+ z;) |

=1

The following theorem provides sharp bounds on the value of k. Using the
inequality
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6—-2x)< T < 1
"6+ exp(z)—1 r z2’
1+—2—+—6—

and Cardan’s formula, the following theorem can be constructed.
Theorem 1. The MLE of k, k satisfies inequality that I%Ls k< I;U, where

max (O

- 1/3 1/3
kU:(u+ u2+v3) —(—u+ u2+v3) —g‘
and
l; — max m—r p+ Vp2+24qwm)
L w 2qw ’
where

p={(m—3r)g—6w, u=ab/6—c/2— (a/3)",v=>b/3—(a/3)? a= (B3w— (m—7r)g)/wg,
b= (3(m—r)g—6w)/wg2 and c=—6m/wq’.
According to Theorem 1, k € (k,, k), it is convenient to employ the rule of
false position to determine the MLE. In that case, the first iteration provides:
. (ky— k)L (kyz)
b L (kgle) - L (kylz)
It is also clear that the MLEs of h(t) and R(t) are given by k{t)
= het"'/(1+4°) and R(t)= (1+29) "

=k.

2.2. Bayesian estimation

Suppose that the parameter ¢ is assumed to be known and k& has a gamma
prior density of the form

_ /60( a—1 _—kB
w(k)= F(a)k e ™, k>0, o,3>0. (6)
It follows from (3) and (6), that the posterior density of k is given by

(w+/3)nl+a'—7' km+a—r*l

m(klz) = TFmta—rClwtbmTa=r] (1—exp(—kg))exp(—k(w+4)), (D
where
R CE)
C,la,b} = abl;)——(a%(l%)bl—)!, a,b> 0, with C, = 1.

From (7), the posterior distribution of k& given z is found to be

k Dq[w+ﬁ,m+a—r;k]
I(klz)= /Oﬂ(t le)dt = Cq[w+,8,m+a—r] ’

®

where
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(_ 1)1(T—!
a U(r—1!1
D labik]l =aY , ————Tb;(a+ )k
q[a ] az=20 (atlq) [b;(a+lg)k]
and I[- ;-] is the incomplete gamma ratio function defined by
9
b ;0] = ﬁb)—/ 2* " lexp(—2)dz, b,0 > 0.
0

2.2.1. Bayes estimators under SEL

Assuming the commonly used squared error loss(SEL) function, L(k, 155)

=(k— 155)2, the Bayes estimator of k(ie, the value IES that minimizes the

posterior expected loss) is the mean of posterior density (7), which is given by

Clw+Bm+a—r+1] mia—r
C;[w+ﬂ,m+a—r] w+

Other problems of interest are those of estimating the failure rate h(t) and the

reliability function R(t), with fixed ¢t > 0. For SEL, the Bayes estimators of h(t)
and R(t) are found to be

ks = E(k|X)=

9)

h Ev‘kth_l ! mta—r ClutBmta—r+i]
s 1+t“) 1+# w+B  Clw+Bm+a—r1] 1o
and
> =k C[w+,3+qt,m+a—r] w8 m+a—r
= ¢ k: ki
R(t)g=E(1+t)7%) Clutpmra—r] (w+/3+q,,) : (11)

where ¢, = log(1+t°).

If r=0, then the Bayes estimators of k, h(t) and R(t) have the following
forms:

]; _ m+ o
ST ow+ s’
~ ' m+a
hit)g= —————,
©)s 1+t w+p
and
—(m+a)
~ _ log(1+tc))
R(t)g=|1+ "

m

where w= Y, (R,+1)log(1+z¢) and these estimators are equivalent to the
i=1

estimators which is based on progressive Type II censoring.

2.2.2. Bayes estimators under Linex Loss
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The use of SEL has been justified in statistical literature on various grounds
because it is the most commonly used loss function. But SEL is symmetric loss
function, which gives equal importance to underestimation and overestimation with
equal magnitude. It is generally agreed upon that in life testing and reliability
context overestimation and underestimation may not be of equal importance. Thus,
the use of asymmetric loss function seems to be more justified. Among these, one
of the most popular asymmetric loss function is the linex loss(LL) function. In
this subsection, we deal with the problems of estimation of parameter k, reliability
function R(t) and failure rate #(¢) under linex loss function.

From (7), the Bayes estimator of k is the value k;; that minimizes the
posterior expected loss. The Bayes estimators of k, h(¢t) and R(t) are followings,
respectively:

k= — %log(E(e_“le)) (12)

1 Clw+g,m+a~r] a
- —(og( ClwtBtamia—r] )+(m+a—r)log(1+ w+ﬂ))’

N c—1
ht) = — %log(E(exp(— ﬂﬁt?) |X)) (13)

1 Ql[w+ﬁ,m+a—r] Qa.t
= ;(log( ] (PR Eur— +(m+a—r)ogll+ wid))
and
Rt),, = %zog{E(e‘““““)“' x)}, (14)

where g,, = act®” '/ (1+¢°) .

If =0, then I;LL =(m+a)/alog(l+a/(w+B)) and ﬁ(t)LL =(m+a)/alog(l+gq,,
/(w+B)).

The posterior expectation given by (14) can not, generally, be obtained in a
closed form. Therefore, in such situations, we use numerical integration technique,
which can be computationally intensive in high dimensional parameter spaces. One
can also use approximate methods such as the approximate form of Lindley (1980)
or that of Tierney and Xadane(T-K) (1986). We adopt here the T-K
approximation since its error is of order O(n~ %), while the error in using

Lindley’s approximate form is of order O(n™1).
2.2.3. The approximation of Tierney and Kadane
This procedure was developed by Tierney and Kadane (1986) to evaluate an

approximation of the posterior moments and marginal densities. Let [(k;z) be the
likelihood function of k based on the n observations and n{klz) denote the
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posterior distribution of k. Then the posterior mean of a function qﬁv(k) can be

fe"’dk
E(p(k)IX)= k)m(k |z )dk = (15)
WX = [ o) (klz) T

where L(k)=1/nlogr(klz) and L'(k) = L(k)+1/nlogé (k).
Following T-K approximation, the equation in (15) can be approximated as

written as

following forms,

E(¢k)X) = (%)Eexp(nu*w )= L(E))), (16)

_ (Io*l )7 6 () (i |=)
lo| w{klz)

where IcA* and k maximizes L*(k) and L(k), respectively and o and o are

negative of the inverses of the second derivatives of L'(k) and L(k) at k' and k
respectively.

We apply this approximation to obtain the Bayes estimators of the reliability
function R(t) given by (14). In this case, ¢(k)=exp(—a(l1+t°)"") and the
functions L and L" are given by respectively,

L(k) = %{(m-l-a—r— 1)logk+ rlog (1— e~ %) — k(w + 8)} (17)
and
L) = Lik)— -‘ﬂlin—tli . (18)

Let L, =0L(k)/ok and L,, = 8>L(k)/ok* be the first and second derivatives of

L(k). Then, the posterior mode k is obtained by setting L, to be zero and
solving the resulting nonlinear equation in k.

Similar derivatives are needed to determine the mode &k of L7(k). Let

L/ =06L"(k)/ok and L, =a*L (k)/ok? be the first and second derivatives of L(k).

Differentiate (18) with respect to k and set the result Z, to be zero. The mode k'
of k can be obtained iteratively by solving the two resulting equations.

Substituting from Z,, and L;; in (16), the Bayes estimator R(t),, of a function

#(k) = exp(— a(1+¢°)"%) under linex loss function takes of the form
1y symto—r—1 & . "
iB(t)LLZ —%log{(%)Q i—) (1_6 Aljexp(—a(l +19)F —(w+ﬂ)(k*— k))} 19)
g

k 1—e H
where

o= (m+a+r—1)/k2+rqe];q/(e];q— 1)?,
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and

0" = (m+a+r—1)/k 4 rge" 1/ (" 9— 1) + allog (1 + %)) (1 + ).
3. A simulation study and Comparisons

Applying the algorithms of Aggarwala and Balakrishnan (1998), the following
steps are used to generate a general progressive Type II censored sample the
BurrXIl(c, k) distribution. ‘

(1) Generate V,, from Beta distribution with parameters n—r and r+1.

(2) Independently generate Z,,; from U(0,1) for i=1,--,m—r—1.

1 m
(3) Set V, ;=2 , apy; =i+ 2, R;, i=1m—r—1.

j=m-—i+1

(4) Set U,4;=1-V, i1 V_ixe =V, i=1m—r.
(5) Set X;=F U,), i=r+ 1,-,m.
This is the desired general progressive Type II censored sample from the

BurrXIl{(c, k). The MLE and Bayes estimates with respect to SEL and linex loss
functions of the parameter k, the reliability function R(¢t) and the failure rate

function h(t) are compared via Monte Carlo simulation study according to the
following steps.

(1) For given ¢=2,k=3 and r=1, generate a general progressive Type II
censored sample of size m=8 with given R,=0,R,=3,R,=0,R =3, Rg=0,
R, =0, Ry_; from the BurrXIl(c, k) whose p.df is given by (1) according to the
above simulation algorithm.

(2) Following above step, the m ordered observed failure times with a general
progressive Type Il censoring scheme (R, ---,R, ) are presented in <Table 1>.

<Table 1> Failure Time X and a censoring scheme R

i 1 2 3 4 5 6 7 8
X, - 0.2636 0.2999 0.3050 0.3295 0.3341 0.5354 0.5466
R 0 3 0 3 0 0 5

According to Theorem 1, it is found that k,=2.787469 and k, = 2.787582,

Since k€ (k I k v)it is convenient to employ the rule of the false position to
determine the MLE. In that case, the first iteration provides:

. (ky— k)L (kjlz)

BT (kyJz) — I (k)

It is also clear that the MLEs of R(t) and h(t) are given respectively by

= 2.787499
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R(t)= 05368 and h(t)=2.230 at ¢=0.5.

The computational results for the Bayes estimates relative to SEL and linex
loss functions are displayed in Tables (2-5) for the case of known parameter
c and the prior parameters a=9 and /=3 which yield the value of k=3 (as the
true value). The MLE, posterior mean, median and mode of k under SEL are
displayed in <Table 2>. Since the posterior density =(klz) is unimodal and

positively skewed, it is clear that k §> l;medi,m > l%mode.

= E— =

<Figure 1> Posterior density and Posterior distribution of k

<Table 2> MLE, posterior mean, median, mode 90% two-sided
and HPD credible ‘interval for £ under SEL

Parameter MLE Posterior mean Posterior median Posterior mode

k 2.7875 2.8962 2.8395 2.7258
90% two-sided . 90% HPD .
. ) Interval width . ) Interval width
credible interval credible interval

(1.8453, 4.1402) 2.2949 (1.7590, 4.0123) 2.2533

The two-sided 90% credible interval for k is given by (1.845311, 4.140184) in
<Table 2> Due to a little asymmetric of =(klz), this interval is 0.03157 units
wider than the corresponding HPD credible interval, (1.748977, 4.012280).

<Table 3> Bayes estimate of k for various «

Parameter a _ IELL
k 1.0 2.674289
0.01 2.89361
-1.0 3.175091

The Bayes estimates of MLE, k, R(t) and h(t) with respect to SEL and the
linex loss function are obtained for various a in <Table 3> and <Table 4>. In
<Table 3>, the Bayes estimates of the parameter k relative to linex loss function
are sensitive to the values of the a.
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<Table 4> MLE and Bayes estimate of k, R(t) and h(t)
under SEL and linex loss function at ¢t =0.5

Parameter MLE Bayes estimate(SEL) Bayes estimate(Linex)
k 2.787499 2.896455 2.89360
R(t) 0.536863 0.530319 0.56498
h(t) 2.230 2.306924 2.31534

For small value a, the linex loss function is almost symmetric and not far
from a SEL. Therefore, the Bayes estimates under SEL and linex loss functions
are almost the same. If a goes to a negative value, then it tends to give more
weight to overestimation. Otherwise, it gives more weight to underestimation.
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