Commun. Korean Math. Soc. **31** (2016), No. 4, pp. 703–712 http://dx.doi.org/10.4134/CKMS.c150097 pISSN: 1225-1763 / eISSN: 2234-3024

COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASS FOR SPIRALLIKE FUNCTIONS DEFINED BY MEANS OF GENERALIZED ATTIYA-SRIVASTAVA OPERATOR

Tugba Yavuz

ABSTRACT. In this article, we derive a sharp estimates for the Taylor-Maclaurin coefficients of functions in some certain subclasses of spirallike functions which are defined by generalized Srivastava-Attiya operator. Several corollaries and consequences of the main result are also considered.

1. Introduction

Let \mathbb{D} be the unit disk $\{z : |z| < 1\}$, \mathcal{A} be the class of functions analytic in \mathbb{D} , satisfying the conditions

(1)
$$f(0) = 0$$
 and $f'(0) = 1$.

Then each function f in \mathcal{A} has the Taylor expansion

(2)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

because of the conditions (1). Let S denote class of analytic and univalent functions in \mathbb{D} with the normalization conditions (1).

Definition 1.1. For $0 \le \alpha < 1$ let $S^*(\alpha)$ and $S^c(\alpha)$ denote the class of starlike and convex univalent functions of order α , which are defined as the following, respectively.

$$S^*(\alpha) = \left\{ f(z) \in S : \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ z \in \mathbb{D} \right\}$$

and

$$S^{c}\left(\alpha\right) = \left\{f(z) \in S : \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathbb{D}\right\}.$$

O2016Korean Mathematical Society

Received May 18, 2015; Revised September 11, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45, 33C45.

 $Key\ words\ and\ phrases.$ univalent functions, spirallike functions, coefficient bounds, generalized Attiya-Srivastava operator.

T. YAVUZ

Observe that $S^*(0) = S^*$ represent standard starlike functions. A notation of α _starlikeness and α _convexity were generalized onto a complex order α by Nasr and Aouf [13]. Spaĉek [16] extend the class of starlike functions by introducing the class of spirallike functions of type β in \mathbb{D} and gave the following analytical characterization of spirallikeness functions of type β in \mathbb{D} .

Theorem 1.2 (Spaĉek [16]). Let the function f(z) be in the normalized analytic function class \mathcal{A} . Also let $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then f(z) is a spirallike function of type β in \mathbb{D} if and only if

(3)
$$\operatorname{Re}\left(e^{i\beta}\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \mathbb{D}.$$

We denote the class of spirallike functions of type β in \mathbb{D} by \widetilde{S}^{β} . Libera [9] unified and extended the classes $S^*(\alpha)$ and \widetilde{S}^{β} by introducing the analytic function class $\widetilde{S}^{\beta}_{\alpha}$ in \mathbb{D} as follows.

Definition 1.3 (Libera [9]). Let the function f(z) be in the normalized analytic function class \mathcal{A} . Also let $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\alpha \in [0, 1)$. We say that $f \in \widetilde{S}^{\beta}_{\alpha}$ if and only if

(4)
$$\operatorname{Re}\left(e^{i\beta}\frac{zf'(z)}{f(z)}\right) > \alpha\cos\beta \quad (z \in \mathbb{D}; \ 0 \le \alpha < 1)$$

From Definition 1.1 and Definition 1.3, we have the following inclusions:

$$\widetilde{S}^{0}_{\alpha}=S^{*}\left(\alpha
ight) \text{ and } \widetilde{S}^{\beta}_{0}=\widetilde{S}^{\beta}$$

Libera [9] also proved the following coefficients bounds for the functions in the class $\widetilde{S}^{\beta}_{\alpha}$.

Theorem 1.4 (Libera [9]). If the function $f \in \widetilde{S}^{\beta}_{\alpha}$ is given by (2), then (5) $|a_n| \leq \prod_{i=0}^{n-2} \left(\frac{|2(1-\alpha)e^{-i\beta}\cos\beta+j|}{j+1} \right) \quad (n \in \mathbb{N} \setminus \{1\}; \mathbb{N} := \{1, 2, 3, \ldots\}).$

The coefficient estimates in (5) are sharp.

In [19], Srivastava and Owa determined a representation formula and radius of starlikeness for functions in the class $S_p(\alpha, a, b)$. They also proved distortion theorem for functions in the same subclass. Several subordination properties of spirallike functions is also investigated in the article [8]. Another interesting results about functions in some certain subclasses of spirallike functions can be found in [20] and [21].

For functions $f \in \mathcal{A}$ given by (2) and $g \in \mathcal{A}$ given by $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, we define the Hadamard product (or convolution) of f and g by

(6)
$$(f*g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \ z \in \mathbb{D}.$$

Let recall a general Hurwitz-Lerch zeta functions $\Phi(z, s, a)$ defined in [18] by

(7)
$$\Phi(z,s,a) := \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s}$$
$$\left(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}, \text{ when } |z| < 1; \ \operatorname{Re}(s) > 1 \text{ when } |z| = 1\right),$$

where $\mathbb{Z}_0^- := \mathbb{Z} \setminus \{\mathbb{N}\}$, $(\mathbb{Z} := \{0, \pm 1, \pm 2, \pm 3, \ldots\})$; $\mathbb{N} := \{1, 2, 3, \ldots\}$. Choi and Srivastava [5], Ferreira and Lopez [6], Garg et al. [7], Lin and Srivastava [10], Lin et al. [11] investigate several interesting properties of this function.

Srivastava and Attiya [17] introduced and investigated the linear operator

$$\mathcal{J}_{\mu,b}: \mathcal{A} \to \mathcal{A}.$$

This operator is defined in terms of the Hadamard product by

(8)
$$\mathcal{J}_{\mu,b}f(z) = \mathcal{G}_{b,\mu} * f(z), \ \left(z \in \mathbb{D}; \ b \in \mathbb{C} \setminus \left\{\mathbb{Z}_0^-\right\}; \ \mu \in \mathbb{C}; \ f \in \mathcal{A}\right),$$

where

where,

(9)
$$\mathcal{G}_{b,\mu}(z) := (1+b)^{\mu} \left[\Phi(z,s,a) - b^{-\mu} \right] \ (z \in \mathbb{D}).$$

We recall here the following relationships (given earlier by [14], [15]) which follow easily by using (2), (8) and (9):

(10)
$$\mathcal{J}_b^{\mu} f(z) = z + \sum_{n=2}^{\infty} \left(\frac{1+b}{n+b}\right)^{\mu} a_n z^n.$$

Murugusundaramoorthy [12] generalized this operator as

(11)
$$\mathcal{J}_{\mu,b}^{m,k}f(z) = z + \sum_{n=2}^{\infty} C_n^m(b,\mu)a_n z^n,$$

where

(12)
$$C_n^m(b,\mu) = \left| \left(\frac{1+b}{n+b} \right)^\mu \frac{m! \left(n+k-2 \right)!}{(k-2)! \left(n+m-1 \right)!} \right|,$$

where $b \in \mathbb{C} \setminus \{\mathbb{Z}_0^-\}$ and $\mu \in \mathbb{C}$, $k \geq 2$ and m > -1. Note that $\mathcal{J}_{\mu,b}^{1,2}$ is the Srivastava-Attiya operator and $\mathcal{J}_{0,b}^{m,k}$ is the Choi-Saigo-Srivastava operator [5]. He also generalized the class of spirallike functions [12] as follows:

Definition 1.5. Let $\mathcal{G}_{b,\mu}^{m,k}(\beta,\alpha,\lambda)$ be the subclass of \mathcal{A} consisting of functions of the form (2) and satisfying

(13)
$$\operatorname{Re}\left(e^{i\beta}\frac{z\left(\mathcal{J}_{\mu,b}^{m,k}f(z)\right)'}{(1-\lambda)\mathcal{J}_{\mu,b}^{m,k}f(z)+\lambda z\left(\mathcal{J}_{\mu,b}^{m,k}f(z)\right)'}\right) > \alpha\cos\beta, \ z \in \mathbb{D},$$

where $0 \leq \lambda < 1, 0 \leq \alpha < 1, -\frac{\pi}{2} < \beta < \frac{\pi}{2}$ and $\mathcal{J}_{\mu,b}^{m,k}f(z)$ is given by (11).

By choosing appropriate values of μ , b, m, k, we obtain the following subclasses:

Example 1.6. For $0 \le \alpha < 1$ and if k = 2 and m = 1 with $\mu = 0, b = 0$, then,

$$\mathcal{G}_{0,0}^{1,2}\left(\beta,\alpha,\lambda\right) = S(\beta,\alpha,\lambda)$$
$$:= \left\{ f \in \mathcal{A} : \operatorname{Re}\left(e^{i\beta} \frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)}\right) > \alpha\cos\beta, \ |\beta| < \frac{\pi}{2}, \ z \in \mathbb{D} \right\}$$

Note that $\mathcal{G}_{0,0}^{1,2}(\beta,\alpha,0) = \tilde{S}_{\alpha}^{\beta}$ and $\mathcal{G}_{0,0}^{1,2}(\beta,0,0) = \tilde{S}^{\beta}$.

Example 1.7. For $0 \le \alpha < 1$ and if k = 2 and m = 1 with $\mu = 1, b = 0$, then,

$$\mathcal{G}_{0,1}^{1,2}\left(\beta,\alpha,\lambda\right) = L(\beta,\alpha,\lambda)$$
$$:= \left\{ f \in \mathcal{A} : \operatorname{Re}\left(e^{i\beta} \frac{z(\mathcal{L}f(z))'}{(1-\lambda)\mathcal{L}f(z)+\lambda z(\mathcal{L}f(z))'}\right) > \alpha\cos\beta, \ |\beta| < \frac{\pi}{2}, \ z \in \mathbb{D} \right\},$$

where \mathcal{L} is the Alexander integral operator [1] given by $\mathcal{L}f(z) = \mathcal{J}_{0,1}^{1,2}f(z)z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n, z \in \mathbb{D}.$

Example 1.8. For $0 \le \alpha < 1$ and if k = 2 and m = 1 with $b = \vartheta$ ($\vartheta > -1$) and $\mu = 1$, then

$$\mathcal{G}_{\vartheta,1}^{1,2}\left(\beta,\alpha,\lambda\right) = B_{\vartheta}(\beta,\alpha,\lambda)$$
$$:= \left\{ f \in \mathcal{A} : \operatorname{Re}\left(e^{i\beta} \frac{z(\mathcal{F}_{\vartheta}f(z))'}{(1-\lambda)\mathcal{F}_{\vartheta}f(z) + \lambda z(\mathcal{F}_{\vartheta}f(z))'}\right) > \alpha\cos\beta, \ |\beta| < \frac{\pi}{2}, \ z \in \mathbb{D} \right\},$$

where $\mathcal{F}_{\vartheta}f(z)$ is the Bernardi operator [2] given by $\mathcal{F}_{\vartheta}f(z) = \mathcal{J}_{\vartheta,1}^{1,2}f(z) = z + \sum_{n=2}^{\infty} \left(\frac{1+\vartheta}{n+\vartheta}\right) a_n z^n, z \in \mathbb{D}.$

Example 1.9. For $0 \le \alpha < 1$ and if k = 2 and m = 1 with b = 1 and $\mu = \sigma$ $(\sigma > 0)$, then

$$\begin{aligned} \mathcal{G}_{1,\sigma}^{1,2}\left(\beta,\alpha,\lambda\right) &= I^{\sigma}(\beta,\alpha,\lambda) \\ &:= \left\{ f \in \mathcal{A} : \operatorname{Re}\left(e^{i\beta} \frac{z(I^{\sigma}f(z))'}{(1-\lambda)I^{\sigma}f(z)+\lambda z(I^{\sigma}f(z))'}\right) > \alpha\cos\beta, \ |\beta| < \frac{\pi}{2}, \ z \in \mathbb{D} \right\}, \\ &\text{here } I^{\sigma}f(z) \text{ is defined by } I^{\sigma}f(z) = \mathcal{J}_{1,\sigma}^{1,2}f(z) = z + \sum_{n=2}^{\infty} \left(\frac{2}{n+1}\right)^{\sigma} a_{n}z^{n}, z \in \mathbb{D}. \end{aligned}$$

Before giving our main results, we need one more definition which is given in the following.

Definition 1.10. Let f(z) and g(z) be analytic functions in \mathbb{D} . We say that f(z) is subordinate to g(z) in \mathbb{D} , and we denote

$$f(z) \prec g(z) \quad (z \in \mathbb{D}),$$

if there exists a Schwarz function w(z) analytic in \mathbb{D} , with

$$w\left(0\right)=0 \text{ and } \left|w\left(z\right)\right|<1 \ \left(z\in\mathbb{D}\right),$$

such that

w

$$f(z) = g(w(z)) \ (z \in \mathbb{D}).$$

In particular, if the function g is univalent in \mathbb{D} , the above subordination is equivalent to

$$f(0) = g(0)$$
 and $f(\mathbb{D}) \subset g(\mathbb{D})$.

After the proof of the Bieberbach Conjecture [3] (which is also known as de Branges Theorem [4]), many authors were interested in other interesting subclasses of normalized analytic function class \mathcal{A} . In this paper, we obtain sharp coefficient bounds for functions in the class $\mathcal{G}_{b,\mu}^{m,k}(\beta,\alpha,\lambda)$ and we give a necessary and sufficient condition such that $f \in \mathcal{A}$ belongs to $\mathcal{G}_{b,\mu}^{m,k}(\beta,\alpha,\lambda)$.

2. Main results

In this section, we obtain coefficient conditions for functions in the class given by Definition 1.5. Also, we get sharp estimates for functions belong to $\mathcal{G}_{b,\mu}^{m,k}\left(\beta,\alpha,\lambda\right)$.

Theorem 2.1. Let $\alpha \in [0,1)$ and $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let f(z) is in the form (2) such that $\mathcal{J}_{\mu,b}^{m,k}f(z) \neq 0$ for $z \in \mathbb{D} \setminus \{0\}$. Then, f(z) belongs to the class $\mathcal{G}_{b,\mu}^{m,k}(\beta, \alpha, \lambda)$ if and only if

$$\sum_{n=1}^{\infty} \left\{ (n-1)\left(1 - \lambda\left(\alpha + i \tan\beta\right)\right) + 2e^{2i\beta} - \lambda\left(1 - \alpha\right)\left(1 - e^{2i\beta}\right)(n-1) \right\} A_n z^n \neq 0$$
$$(z \in z \in \mathbb{D} \setminus \{0\}),$$

where

$$A_n = C_n^m(b,\mu)a_n \text{ and } C_n^m(b,\mu) = \left| \left(\frac{1+b}{n+b}\right)^\mu \frac{m! (n+k-2)!}{(k-2)! (n+m-1)!} \right|.$$

Proof. Let the function $f \in S$ be defined by (2). Define a function

(15)
$$h(z) = \mathcal{J}_{\mu,b}^{m,k} f(z) = z + \sum_{n=2}^{\infty} A_n z^n, \ z \in \mathbb{D}.$$

Consider the function

$$p(z) = \frac{e^{i\beta}\sec\beta\left(\frac{zh(z)}{(1-\lambda)h(z)+\lambda zh'(z)}\right) - i\tan\beta - \alpha}{1-\alpha}$$

is an analytic function which satisfies p(0) = 1 and $\operatorname{Re}(p(z)) > 0$, then $f \in \mathcal{G}_{b,\mu}^{m,k}(\beta, \alpha, \lambda)$ if and only if

$$p\left(z\right) \neq \frac{1 - e^{2i\beta}}{1 + e^{2i\beta}}$$

or,

$$\frac{e^{i\beta}\sec\beta zh'(z) - (\alpha + i\tan\beta)\left((1-\lambda)h(z) + \lambda zh'(z)\right)}{(1-\alpha)\left((1-\lambda)h(z) + \lambda zh'(z)\right)} \neq \frac{1 - e^{2i\beta}}{1 + e^{2i\beta}}.$$

By using the series expansion of h(z) which is given by (15), we get the following

$$(1+e^{2i\beta})\sum_{n=1}^{\infty} \left[(n-1)\left(1-\alpha\lambda-i\lambda\tan\beta\right)+(1-\alpha)\right]A_n z^n$$

$$\neq (1-\alpha)\left(1-e^{2i\beta}\right)\sum_{k=1}^{\infty}\left(1+(n-1)\lambda\right)A_n z^n$$

for $z \neq 0$. It is equivalent to

$$\sum_{n=1}^{\infty} \left\{ (n-1) \left(1 - \lambda \left(\alpha + i \tan \beta \right) \right) + 2e^{2i\beta} - (1-\alpha) \left(1 - e^{2i\beta} \right) (n-1) \lambda \right\} A_n z^n \neq 0,$$

which completes the proof.

which completes the proof.

Now, we prove our coefficient estimates for functions which belong to the class $\mathcal{G}^{m,k}_{b,\mu}\left(\beta,\alpha,\lambda\right).$

Theorem 2.2. Let $\alpha \in [0,1)$ and $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let f(z) be in the form (2) such that $\mathcal{J}_{\mu,b}^{m,k}f(z) \neq 0$ for $z \in \mathbb{D}\setminus\{0\}$. If f(z) belongs to the class $\mathcal{G}_{b,\mu}^{m,k}(\beta,\alpha,\lambda), then$

(16)
$$|a_n| \leq \frac{(k-2)!}{m! (n+k-2)! (1-\lambda)^{n-1}} \binom{n+m-1}{n-1} \left| \left(\frac{1+b}{n+b} \right)^{\mu} \right|$$

 $\times \prod_{j=0}^{n-2} |j(1-\lambda) + 2(1-\alpha) e^{i\beta} \cos\beta (1+\lambda j)|$
 $(n \in \mathbb{N} \setminus \{1\}; \mathbb{N} := \{1, 2, 3, \ldots\}).$

Proof. Since $f \in \mathcal{G}_{b,\mu}^{m,k}(\beta, \alpha, \lambda)$ there exists a Schwarz function w(z), which is already introduced in Definition 1.10, such that

$$e^{i\beta}\sec\beta\left(\frac{z\left(\mathcal{J}_{\mu,b}^{m,k}f(z)\right)'}{\left(1-\lambda\right)\mathcal{J}_{\mu,b}^{m,k}f(z)+\lambda z\left(\mathcal{J}_{\mu,b}^{m,k}f(z)\right)'}\right)-i\tan\beta=\frac{1+\left(1-2\alpha\right)w(z)}{1-w(z)}.$$

Consider the function h(z) defined by (15). Then, we get

(17)
$$\sum_{n=2}^{\infty} \left[ne^{i\beta} \sec\beta - (1+i\tan\beta) \left(1-(n-1)\lambda\right) \right] A_n z^n \\ = \left(\sum_{n=1}^{\infty} \left[ne^{i\beta} \sec\beta + (1-2\alpha-i\tan\beta) \left(1+(n-1)\lambda\right) \right] A_n z^n \right) w(z).$$

The last equation (17) may be written (for $n \in \mathbb{N}$) as follows:

(18)
$$\sum_{n=2}^{m} \left[n e^{i\beta} \sec\beta - (1+i\tan\beta) \left(1-(n-1)\lambda\right) \right] A_n z^n + \sum_{n=m+1}^{\infty} b_n z^n$$

$$= \left(\sum_{n=1}^{m-1} \left[ne^{i\beta}\sec\beta + (1-2\alpha-i\tan\beta)\left(1+(n-1)\lambda\right)\right]A_n z^n\right)w(z).$$

The last sum on the left-hand side of (18) is convergent in \mathbb{D} for $m = 2, 3, \ldots$

Since, by hypothesis, $|w\left(z\right)|<1\ (z\in\mathbb{D})\,,$ it is not difficult to find by appealing to Parseval's Theorem that

$$\sum_{n=1}^{m-1} |ne^{i\beta} \sec\beta (1 - 2\alpha - i\tan\beta) (1 + (n-1)\lambda)|^2 |A_n|^2$$

$$\geq \sum_{n=2}^{m} |ne^{i\beta} \sec\beta - (1 + i\tan\beta) (1 - (n-1)\lambda)|^2 |A_n|^2$$

or

(19)
$$\sum_{n=1}^{m-1} 4 \left(1-\alpha\right) \left(n-\alpha \left(1+(n-1)\lambda\right)\right) |A_n|^2 \ge \frac{(m-1)^2 \left(1-\lambda\right)^2}{\cos^2 \beta} |A_m|^2,$$

where $A_1 = 1$.

We claim that

(20)
$$|A_n| \le \frac{1}{(n-1)! (1-\lambda)^{n-1}} \prod_{j=0}^{n-2} |j(1-\lambda) + 2(1-\alpha) \cos \beta e^{i\beta} (1+j\lambda)|.$$

For n = 2, we get from (19)

$$|A_2| \le \frac{2(1-\alpha)\cos\beta}{1-\lambda},$$

which is equivalent to (20). (20) is obtained for larger n from inequality (19) by the principle of the mathematical induction.

Fix $n, n \ge 3$, and suppose that (16) holds for k = 2, 3, ..., n-1. Then from (19) we get the following inequality

(21)
$$|A_n|^2 \le \frac{4(1-\alpha)\cos^2\beta}{(n-1)^2(1-\lambda)^2} \left\{ 1 - \alpha + \sum_{k=2}^{n-1} B(k,j,\alpha) \right\},\$$

where

$$B(k, j, \alpha) = \frac{(1 + (k-1)\lambda)(k - \alpha(k-1)\lambda)}{((k-1)!(1-\lambda)^{k-1})^2} \prod_{j=0}^{k-2} |j(1-\lambda) + 2(1-\alpha)\cos\beta e^{i\beta}(1+j\lambda)|^2.$$

We must show that the square of the right side of (20) is equal to the right side of (21); that is

(22)
$$\frac{\prod_{j=0}^{n-2} \left| j \left(1 - \lambda \right) + 2 \left(1 - \alpha \right) \cos \beta e^{i\beta} \left(1 + j\lambda \right) \right|^2}{\left[\left(n - 1 \right)! \left(1 - \lambda \right)^{n-1} \right]^2}$$

T. YAVUZ

$$= \frac{4(1-\alpha)\cos^{2}\beta}{(n-1)^{2}(1-\lambda)^{2}} \left\{ 1 - \alpha + \sum_{k=2}^{n-1} B(k,j,\alpha) \right\}$$

for $n = 3, 4, \ldots$ After necessary calculations we can show that (22) is true for n = 3 and proves our claim for n = 3. Assume that (22) is valid for all k, $3 < k \le n - 1$; then from (19) and (21) we obtain

$$|A_n|^2 \le \frac{4(1-\alpha)\cos^2\beta}{(n-1)^2(1-\lambda)^2} \left\{ 1 - \alpha + \sum_{k=2}^{n-2} B(k,j,\alpha) + B(n-1,j,\alpha) \right\}$$

$$\begin{aligned} |A_n|^2 &\leq \frac{4\left(1-\alpha\right)\cos^2\beta}{\left(n-1\right)^2\left(1-\lambda\right)^2} \left\{1-\alpha \\ &+ \sum_{k=2}^{n-2} \frac{\left(1+(k-1)\lambda\right)(k-\alpha(k-1)\lambda)}{\left((k-1)!(1-\lambda)^{k-1}\right)^2} \prod_{j=0}^{k-2} \left|j\left(1-\lambda\right)+2\left(1-\alpha\right)\cos\beta e^{i\beta}\left(1+j\lambda\right)\right|^2 \\ &+ \frac{\left(1+(n-2)\lambda\right)(n-1-\alpha(n-2)\lambda)}{\left((n-2)!(1-\lambda)^{n-2}\right)^2} \prod_{j=0}^{n-3} \left|j\left(1-\lambda\right)+2\left(1-\alpha\right)\cos\beta e^{i\beta}\left(1+j\lambda\right)\right|^2 \right\} \end{aligned}$$

$$= \frac{\prod_{j=0}^{n-3} |j(1-\lambda)+2(1-\alpha)\cos\beta e^{i\beta}(1+j\lambda)|^2}{\left((n-2)!(1-\lambda)^{n-2}\right)^2} \left\{ \frac{(n-2)^2}{(n-1)^2} +4\left(1-\alpha\right)\cos^2\beta \frac{(1+(n-2)\lambda)(n-1-\alpha(n-2)\lambda)}{(n-1)^2(1-\lambda)^2} \right\}$$

$$= \frac{\prod_{j=0}^{n-3} |j(1-\lambda)+2(1-\alpha)\cos\beta e^{i\beta}(1+j\lambda)|^2}{\left((n-1)!(1-\lambda)^{n-1}\right)^2} \left\{ (n-2)^2 (1-\lambda)^2 +4 (1-\alpha)\cos^2\beta (1+(n-2)\lambda) (n-1-\alpha (n-2)\lambda) \right\}$$
$$= \frac{1}{\left((n-1)!(1-\lambda)^{n-1}\right)^2} \prod_{j=0}^{n-2} |j(1-\lambda)+2(1-\alpha)\cos\beta e^{i\beta} (1+j\lambda)|^2.$$

From equality (11) and (12), we get the desired result.

3. Corollaries and consequences

By choosing appropriate values of μ , b, m, k in Theorem 4 above, we obtain the corresponding results for several subclasses of S.

Corollary 3.1. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in S(\beta, \alpha, \lambda)$, then

$$|a_k| \le \frac{1}{(n-1)! (1-\lambda)^{n-1}} \prod_{j=0}^{n-2} |j(1-\lambda) + 2(1-\alpha) \cos \beta e^{i\beta} (1+j\lambda)|.$$

Corollary 3.2. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in L(\beta, \alpha, \lambda)$, then

$$|a_k| \le \frac{1}{n! (1-\lambda)^{n-1}} \prod_{j=0}^{n-2} |j(1-\lambda) + 2(1-\alpha) \cos \beta e^{i\beta} (1+j\lambda)|.$$

Corollary 3.3. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in B_{\vartheta}(\beta, \alpha, \lambda)$, then

$$|a_k| \leq \frac{1}{n! \left(1-\lambda\right)^{n-1}} \left(\frac{1+\vartheta}{n+\vartheta}\right) \prod_{j=0}^{n-2} \left| j\left(1-\lambda\right) + 2\left(1-\alpha\right) \cos\beta e^{i\beta} \left(1+j\lambda\right) \right|.$$

Corollary 3.4. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in I^{\sigma}(\beta, \alpha, \lambda)$, then

$$|a_k| \le \frac{1}{n! (1-\lambda)^{n-1}} \left(\frac{2}{n+1}\right)^{\sigma} \prod_{j=0}^{n-2} |j(1-\lambda) + 2(1-\alpha) \cos \beta e^{i\beta} (1+j\lambda)|.$$

In addition, if $f(z) \in \mathcal{G}_{0,0}^{1,2}(\beta, \alpha, 0)$ or $f(z) \in \mathcal{G}_{0,0}^{1,2}(\beta, 0, 0)$, then we get the results in Theorem 1.2 and Theorem 1.4, respectively.

References

- J. W. Alexander, Functions which map the interior of the unit circle upon simple region, Ann. Math. 17 (1915), no. 1, 12–22.
- [2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446.
- [3] L. Bieberbach, Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten, S. B. Preuss. Akad. Wiss. 1: Sitzungsb. Berlin 38 (1916), 940–955.
- [4] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137–152.
- [5] J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch zeta function, Appl. Math. Comput. 170 (2005), no. 1, 399–409.
- [6] C. Ferreira and J. L. Lopez, Asymptotic expansions of the Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 298 (2004), no. 1, 210–224.
- [7] M. Garg, K. Jain, and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 803–815.
- [8] Y. C. Kim and H. M. Srivastava, Some subordination properties for spirallike functions, Appl. Math. Comput. 203 (2008), no. 2, 838–842.
- [9] R. J. Libera, Univalent α-spiral functions, Canad. J. Math. 19 (1967), 449–456.
- [10] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), no. 3, 725–733.
- [11] S.-D. Lin, H. M. Srivastava, and P. Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 817–827.
- [12] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Integral Transforms Spec. Funct. 23 (2012), no. 2, 97–103.

T. YAVUZ

- [13] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A 12 (1983), no. 1, 153–159.
- [14] J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the class of strongly starlike and convex functions, J. Math. Inequal. 3 (2009), no. 1, 129–137.
- [15] D. Răducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 933–943.
- [16] L. Spaĉek, Contribution à la théorie des fonctions univalentes, Časopis Pěst. Mat. 62 (1932), 12–19.
- [17] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), no. 3-4, 207–216.
- [18] H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
- [19] H. M. Srivastava and S. Owa, A note on certain subclasses of spiral-like functions, Rend. Sem. Mat. Univ. Padova 80 (1988), 17–24.
- [20] Q.-H. Xu, C.-B. Lv, N.-C. Luo, and H. M. Srivastava, Sharp coefficient estimates for a certain general class of spirallike functions by means of differential subordination, Filomat. 27 (2013), no. 7, 1351–1356.
- [21] Q.-H. Xu, C.-B. Lv, and H. M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput. 219 (2013), no. 12, 7000–7011.

TUGBA YAVUZ DEPARTMENT OF MATHEMATICS GEBZE TECHNICAL UNIVERSITY GEBZE, KOCAELI TURKEY *E-mail address*: tyavuz@gtu.edu.dr