COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASS FOR SPIRALLIKE FUNCTIONS DEFINED BY MEANS OF GENERALIZED ATTIYA-SRIVASTAVA OPERATOR

Tugba Yavuz

Abstract

In this article, we derive a sharp estimates for the TaylorMaclaurin coefficients of functions in some certain subclasses of spirallike functions which are defined by generalized Srivastava-Attiya operator Several corollaries and consequences of the main result are also considered.

1. Introduction

Let \mathbb{D} be the unit disk $\{z:|z|<1\}, \mathcal{A}$ be the class of functions analytic in \mathbb{D}, satisfying the conditions

$$
\begin{equation*}
f(0)=0 \text { and } f^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

Then each function f in \mathcal{A} has the Taylor expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{2}
\end{equation*}
$$

because of the conditions (1). Let S denote class of analytic and univalent functions in \mathbb{D} with the normalization conditions (1).

Definition 1.1. For $0 \leq \alpha<1$ let $S^{*}(\alpha)$ and $S^{c}(\alpha)$ denote the class of starlike and convex univalent functions of order α, which are defined as the following, respectively.

$$
S^{*}(\alpha)=\left\{f(z) \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathbb{D}\right\}
$$

and

$$
S^{c}(\alpha)=\left\{f(z) \in S: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{D}\right\}
$$

Received May 18, 2015; Revised September 11, 2015.
2010 Mathematics Subject Classification. Primary 30C45, 33C45.
Key words and phrases. univalent functions, spirallike functions, coefficient bounds, generalized Attiya-Srivastava operator.

Observe that $S^{*}(0)=S^{*}$ represent standard starlike functions. A notation of α _starlikeness and α _convexity were generalized onto a complex order α by Nasr and Aouf [13]. Spaĉek [16] extend the class of starlike functions by introducing the class of spirallike functions of type β in \mathbb{D} and gave the following analytical characterization of spirallikeness functions of type β in \mathbb{D}.

Theorem 1.2 (Spaĉek [16]). Let the function $f(z)$ be in the normalized analytic function class \mathcal{A}. Also let $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then $f(z)$ is a spirallike function of type β in \mathbb{D} if and only if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{D} \tag{3}
\end{equation*}
$$

We denote the class of spirallike functions of type β in \mathbb{D} by \widetilde{S}^{β}. Libera [9] unified and extended the classes $S^{*}(\alpha)$ and \widetilde{S}^{β} by introducing the analytic function class $\widetilde{S}_{\alpha}^{\beta}$ in \mathbb{D} as follows.

Definition 1.3 (Libera [9]). Let the function $f(z)$ be in the normalized analytic function class \mathcal{A}. Also let $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\alpha \in[0,1)$. We say that $f \in \widetilde{S}_{\alpha}^{\beta}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \cos \beta \quad(z \in \mathbb{D} ; 0 \leq \alpha<1) \tag{4}
\end{equation*}
$$

From Definition 1.1 and Definition 1.3, we have the following inclusions:

$$
\widetilde{S}_{\alpha}^{0}=S^{*}(\alpha) \text { and } \widetilde{S}_{0}^{\beta}=\widetilde{S}^{\beta}
$$

Libera [9] also proved the following coefficients bounds for the functions in the class $\widetilde{S}_{\alpha}^{\beta}$.

Theorem 1.4 (Libera [9]). If the function $f \in \widetilde{S}_{\alpha}^{\beta}$ is given by (2), then

$$
\begin{equation*}
\left|a_{n}\right| \leq \prod_{j=0}^{n-2}\left(\frac{\left|2(1-\alpha) e^{-i \beta} \cos \beta+j\right|}{j+1}\right) \quad(n \in \mathbb{N} \backslash\{1\} ; \mathbb{N}:=\{1,2,3, \ldots\}) \tag{5}
\end{equation*}
$$

The coefficient estimates in (5) are sharp.
In [19], Srivastava and Owa determined a representation formula and radius of starlikeness for functions in the class $S_{p}(\alpha, a, b)$. They also proved distortion theorem for functions in the same subclass. Several subordination properties of spirallike functions is also investigated in the article [8]. Another interesting results about functions in some certain subclasses of spirallike functions can be found in [20] and [21].

For functions $f \in \mathcal{A}$ given by (2) and $g \in \mathcal{A}$ given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, we define the Hadamard product (or convolution) of f and g by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, z \in \mathbb{D} \tag{6}
\end{equation*}
$$

Let recall a general Hurwitz-Lerch zeta functions $\Phi(z, s, a)$ defined in [18] by

$$
\begin{equation*}
\Phi(z, s, a):=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} \tag{7}
\end{equation*}
$$

$$
\left(a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}, \text { when }|z|<1 ; \operatorname{Re}(s)>1 \text { when }|z|=1\right)
$$

where $\mathbb{Z}_{0}^{-}:=\mathbb{Z} \backslash\{\mathbb{N}\},(\mathbb{Z}:=\{0, \pm 1, \pm 2, \pm 3, \ldots\}) ; \mathbb{N}:=\{1,2,3, \ldots\}$. Choi and Srivastava [5], Ferreira and Lopez [6], Garg et al. [7], Lin and Srivastava [10], Lin et al. [11] investigate several interesting properties of this function.

Srivastava and Attiya [17] introduced and investigated the linear operator

$$
\mathcal{J}_{\mu, b}: \mathcal{A} \rightarrow \mathcal{A}
$$

This operator is defined in terms of the Hadamard product by

$$
\begin{equation*}
\mathcal{J}_{\mu, b} f(z)=\mathcal{G}_{b, \mu} * f(z), \quad\left(z \in \mathbb{D} ; b \in \mathbb{C} \backslash\left\{\mathbb{Z}_{0}^{-}\right\} ; \mu \in \mathbb{C} ; f \in \mathcal{A}\right), \tag{8}
\end{equation*}
$$

where,

$$
\begin{equation*}
\mathcal{G}_{b, \mu}(z):=(1+b)^{\mu}\left[\Phi(z, s, a)-b^{-\mu}\right](z \in \mathbb{D}) . \tag{9}
\end{equation*}
$$

We recall here the following relationships (given earlier by [14], [15]) which follow easily by using (2), (8) and (9) :

$$
\begin{equation*}
\mathcal{J}_{b}^{\mu} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{1+b}{n+b}\right)^{\mu} a_{n} z^{n} . \tag{10}
\end{equation*}
$$

Murugusundaramoorthy [12] generalized this operator as

$$
\begin{equation*}
\mathcal{J}_{\mu, b}^{m, k} f(z)=z+\sum_{n=2}^{\infty} C_{n}^{m}(b, \mu) a_{n} z^{n} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}^{m}(b, \mu)=\left|\left(\frac{1+b}{n+b}\right)^{\mu} \frac{m!(n+k-2)!}{(k-2)!(n+m-1)!}\right| \tag{12}
\end{equation*}
$$

where $b \in \mathbb{C} \backslash\left\{\mathbb{Z}_{0}^{-}\right\}$and $\mu \in \mathbb{C}, k \geq 2$ and $m>-1$. Note that $\mathcal{J}_{\mu, b}^{1,2}$ is the Srivastava-Attiya operator and $\mathcal{J}_{0, b}^{m, k}$ is the Choi-Saigo-Srivastava operator [5].

He also generalized the class of spirallike functions [12] as follows:
Definition 1.5. Let $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$ be the subclass of \mathcal{A} consisting of functions of the form (2) and satisfying

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z\left(\mathcal{J}_{\mu, b}^{m, k} f(z)\right)^{\prime}}{(1-\lambda) \mathcal{J}_{\mu, b}^{m, k} f(z)+\lambda z\left(\mathcal{J}_{\mu, b}^{m, k} f(z)\right)^{\prime}}\right)>\alpha \cos \beta, z \in \mathbb{D}, \tag{13}
\end{equation*}
$$

where $0 \leq \lambda<1,0 \leq \alpha<1,-\frac{\pi}{2}<\beta<\frac{\pi}{2}$ and $\mathcal{J}_{\mu, b}^{m, k} f(z)$ is given by (11).
By choosing appropriate values of μ, b, m, k, we obtain the following subclasses:

Example 1.6. For $0 \leq \alpha<1$ and if $k=2$ and $m=1$ with $\mu=0, b=0$, then,

$$
\begin{gathered}
\mathcal{G}_{0,0}^{1,2}(\beta, \alpha, \lambda)=S(\beta, \alpha, \lambda) \\
:=\left\{f \in \mathcal{A}: \operatorname{Re}\left(e^{i \beta} \frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right)>\alpha \cos \beta,|\beta|<\frac{\pi}{2}, \quad z \in \mathbb{D}\right\} .
\end{gathered}
$$

Note that $\mathcal{G}_{0,0}^{1,2}(\beta, \alpha, 0)=\widetilde{S}_{\alpha}^{\beta}$ and $\mathcal{G}_{0,0}^{1,2}(\beta, 0,0)=\widetilde{S}^{\beta}$.
Example 1.7. For $0 \leq \alpha<1$ and if $k=2$ and $m=1$ with $\mu=1, b=0$, then,

$$
\begin{gathered}
\mathcal{G}_{0,1}^{1,2}(\beta, \alpha, \lambda)=L(\beta, \alpha, \lambda) \\
:=\left\{f \in \mathcal{A}: \operatorname{Re}\left(e^{i \beta} \frac{z(\mathcal{L} f(z))^{\prime}}{(1-\lambda) \mathcal{L} f(z)+\lambda z(\mathcal{L} f(z))^{\prime}}\right)>\alpha \cos \beta,|\beta|<\frac{\pi}{2}, z \in \mathbb{D}\right\}
\end{gathered}
$$

where \mathcal{L} is the Alexander integral operator [1] given by $\mathcal{L} f(z)=\mathcal{J}_{0,1}^{1,2} f(z) z+$ $\sum_{n=2}^{\infty} \frac{a_{n}}{n} z^{n}, z \in \mathbb{D}$.

Example 1.8. For $0 \leq \alpha<1$ and if $k=2$ and $m=1$ with $b=\vartheta(\vartheta>-1)$ and $\mu=1$, then

$$
\begin{gathered}
\mathcal{G}_{\vartheta, 1}^{1,2}(\beta, \alpha, \lambda)=B_{\vartheta}(\beta, \alpha, \lambda) \\
:=\left\{f \in \mathcal{A}: \operatorname{Re}\left(e^{i \beta} \frac{z\left(\mathcal{F}_{\vartheta} f(z)\right)^{\prime}}{(1-\lambda) \mathcal{F}_{\vartheta} f(z)+\lambda z\left(\mathcal{F}_{\vartheta} f(z)\right)^{\prime}}\right)>\alpha \cos \beta,|\beta|<\frac{\pi}{2}, z \in \mathbb{D}\right\},
\end{gathered}
$$

where $\mathcal{F}_{\vartheta} f(z)$ is the Bernardi operator [2] given by $\mathcal{F}_{\vartheta} f(z)=\mathcal{J}_{\vartheta, 1}^{1,2} f(z)=$ $z+\sum_{n=2}^{\infty}\left(\frac{1+\vartheta}{n+\vartheta}\right) a_{n} z^{n}, z \in \mathbb{D}$.
Example 1.9. For $0 \leq \alpha<1$ and if $k=2$ and $m=1$ with $b=1$ and $\mu=\sigma$ $(\sigma>0)$, then

$$
\begin{gathered}
\mathcal{G}_{1, \sigma}^{1,2}(\beta, \alpha, \lambda)=I^{\sigma}(\beta, \alpha, \lambda) \\
:=\left\{f \in \mathcal{A}: \operatorname{Re}\left(e^{i \beta} \frac{z\left(I^{\sigma} f(z)\right)^{\prime}}{(1-\lambda) I^{\sigma} f(z)+\lambda z\left(I^{\sigma} f(z)\right)^{\prime}}\right)>\alpha \cos \beta,|\beta|<\frac{\pi}{2}, z \in \mathbb{D}\right\},
\end{gathered}
$$

where $I^{\sigma} f(z)$ is defined by $I^{\sigma} f(z)=\mathcal{J}_{1, \sigma}^{1,2} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{2}{n+1}\right)^{\sigma} a_{n} z^{n}, z \in \mathbb{D}$.
Before giving our main results, we need one more definition which is given in the following.
Definition 1.10. Let $f(z)$ and $g(z)$ be analytic functions in \mathbb{D}. We say that $f(z)$ is subordinate to $g(z)$ in \mathbb{D}, and we denote

$$
f(z) \prec g(z) \quad(z \in \mathbb{D})
$$

if there exists a Schwarz function $w(z)$ analytic in \mathbb{D}, with

$$
w(0)=0 \text { and }|w(z)|<1 \quad(z \in \mathbb{D})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{D}) .
$$

In particular, if the function g is univalent in \mathbb{D}, the above subordination is equivalent to

$$
f(0)=g(0) \text { and } f(\mathbb{D}) \subset g(\mathbb{D}) .
$$

After the proof of the Bieberbach Conjecture [3] (which is also known as de Branges Theorem [4]), many authors were interested in other interesting subclasses of normalized analytic function class \mathcal{A}. In this paper, we obtain sharp coefficient bounds for functions in the class $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$ and we give a necessary and sufficient condition such that $f \in \mathcal{A}$ belongs to $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$.

2. Main results

In this section, we obtain coefficient conditions for functions in the class given by Definition 1.5. Also, we get sharp estimates for functions belong to $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$.

Theorem 2.1. Let $\alpha \in[0,1)$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let $f(z)$ is in the form (2) such that $\mathcal{J}_{\mu, b}^{m, k} f(z) \neq 0$ for $z \in \mathbb{D} \backslash\{0\}$. Then, $f(z)$ belongs to the class $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$ if and only if

$$
\begin{gather*}
\sum_{n=1}^{\infty}\left\{(n-1)(1-\lambda(\alpha+i \tan \beta))+2 e^{2 i \beta}-\lambda(1-\alpha)\left(1-e^{2 i \beta}\right)(n-1)\right\} A_{n} z^{n} \neq 0 \tag{14}\\
(z \in z \in \mathbb{D} \backslash\{0\}),
\end{gather*}
$$

where

$$
A_{n}=C_{n}^{m}(b, \mu) a_{n} \text { and } C_{n}^{m}(b, \mu)=\left|\left(\frac{1+b}{n+b}\right)^{\mu} \frac{m!(n+k-2)!}{(k-2)!(n+m-1)!}\right|
$$

Proof. Let the function $f \in S$ be defined by (2). Define a function

$$
\begin{equation*}
h(z)=\mathcal{J}_{\mu, b}^{m, k} f(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}, z \in \mathbb{D} . \tag{15}
\end{equation*}
$$

Consider the function

$$
p(z)=\frac{e^{i \beta} \sec \beta\left(\frac{z h(z)}{(1-\lambda) h(z)+\lambda z h^{\prime}(z)}\right)-i \tan \beta-\alpha}{1-\alpha}
$$

is an analytic function which satisfies $p(0)=1$ and $\operatorname{Re}(p(z))>0$, then $f \in$ $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$ if and only if

$$
p(z) \neq \frac{1-e^{2 i \beta}}{1+e^{2 i \beta}}
$$

or,

$$
\frac{e^{i \beta} \sec \beta z h^{\prime}(z)-(\alpha+i \tan \beta)\left((1-\lambda) h(z)+\lambda z h^{\prime}(z)\right)}{(1-\alpha)\left((1-\lambda) h(z)+\lambda z h^{\prime}(z)\right)} \neq \frac{1-e^{2 i \beta}}{1+e^{2 i \beta}} .
$$

By using the series expansion of $h(z)$ which is given by (15), we get the following

$$
\begin{aligned}
& \left(1+e^{2 i \beta}\right) \sum_{n=1}^{\infty}[(n-1)(1-\alpha \lambda-i \lambda \tan \beta)+(1-\alpha)] A_{n} z^{n} \\
\neq & (1-\alpha)\left(1-e^{2 i \beta}\right) \sum_{k=1}^{\infty}(1+(n-1) \lambda) A_{n} z^{n}
\end{aligned}
$$

for $z \neq 0$. It is equivalent to

$$
\sum_{n=1}^{\infty}\left\{(n-1)(1-\lambda(\alpha+i \tan \beta))+2 e^{2 i \beta}-(1-\alpha)\left(1-e^{2 i \beta}\right)(n-1) \lambda\right\} A_{n} z^{n} \neq 0
$$

which completes the proof.
Now, we prove our coefficient estimates for functions which belong to the class $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$.

Theorem 2.2. Let $\alpha \in[0,1)$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let $f(z)$ be in the form (2) such that $\mathcal{J}_{\mu, b}^{m, k} f(z) \neq 0$ for $z \in \mathbb{D} \backslash\{0\}$. If $f(z)$ belongs to the class $\mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$, then
(16) $\quad\left|a_{n}\right| \leq \frac{(k-2)!}{m!(n+k-2)!(1-\lambda)^{n-1}}\binom{n+m-1}{n-1}\left|\left(\frac{1+b}{n+b}\right)^{\mu}\right|$

$$
\begin{aligned}
& \times \prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) e^{i \beta} \cos \beta(1+\lambda j)\right| \\
&(n \in \mathbb{N} \backslash\{1\} ; \mathbb{N}:=\{1,2,3, \ldots\}) .
\end{aligned}
$$

Proof. Since $f \in \mathcal{G}_{b, \mu}^{m, k}(\beta, \alpha, \lambda)$ there exists a Schwarz function $w(z)$, which is already introduced in Definition 1.10, such that
$e^{i \beta} \sec \beta\left(\frac{z\left(\mathcal{J}_{\mu, b}^{m, k} f(z)\right)^{\prime}}{(1-\lambda) \mathcal{J}_{\mu, b}^{m, k} f(z)+\lambda z\left(\mathcal{J}_{\mu, b}^{m, k} f(z)\right)^{\prime}}\right)-i \tan \beta=\frac{1+(1-2 \alpha) w(z)}{1-w(z)}$.
Consider the function $h(z)$ defined by (15). Then, we get

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left[n e^{i \beta} \sec \beta-(1+i \tan \beta)(1-(n-1) \lambda)\right] A_{n} z^{n} \tag{17}\\
= & \left(\sum_{n=1}^{\infty}\left[n e^{i \beta} \sec \beta+(1-2 \alpha-i \tan \beta)(1+(n-1) \lambda)\right] A_{n} z^{n}\right) w(z) .
\end{align*}
$$

The last equation (17) may be written (for $n \in \mathbb{N}$) as follows:

$$
\begin{equation*}
\sum_{n=2}^{m}\left[n e^{i \beta} \sec \beta-(1+i \tan \beta)(1-(n-1) \lambda)\right] A_{n} z^{n}+\sum_{n=m+1}^{\infty} b_{n} z^{n} \tag{18}
\end{equation*}
$$

$$
=\left(\sum_{n=1}^{m-1}\left[n e^{i \beta} \sec \beta+(1-2 \alpha-i \tan \beta)(1+(n-1) \lambda)\right] A_{n} z^{n}\right) w(z)
$$

The last sum on the left-hand side of (18) is convergent in \mathbb{D} for $m=2,3, \ldots$
Since, by hypothesis, $|w(z)|<1(z \in \mathbb{D})$, it is not difficult to find by appealing to Parseval's Theorem that

$$
\begin{aligned}
& \sum_{n=1}^{m-1}\left|n e^{i \beta} \sec \beta(1-2 \alpha-i \tan \beta)(1+(n-1) \lambda)\right|^{2}\left|A_{n}\right|^{2} \\
\geq & \sum_{n=2}^{m}\left|n e^{i \beta} \sec \beta-(1+i \tan \beta)(1-(n-1) \lambda)\right|^{2}\left|A_{n}\right|^{2}
\end{aligned}
$$

or
(19) $\sum_{n=1}^{m-1} 4(1-\alpha)(n-\alpha(1+(n-1) \lambda))\left|A_{n}\right|^{2} \geq \frac{(m-1)^{2}(1-\lambda)^{2}}{\cos ^{2} \beta}\left|A_{m}\right|^{2}$,
where $A_{1}=1$.
We claim that
(20) $\left|A_{n}\right| \leq \frac{1}{(n-1)!(1-\lambda)^{n-1}} \prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|$.

For $n=2$, we get from (19)

$$
\left|A_{2}\right| \leq \frac{2(1-\alpha) \cos \beta}{1-\lambda}
$$

which is equivalent to (20). (20) is obtained for larger n from inequality (19) by the principle of the mathematical induction.

Fix $n, n \geq 3$, and suppose that (16) holds for $k=2,3, \ldots, n-1$. Then from (19) we get the following inequality

$$
\begin{equation*}
\left|A_{n}\right|^{2} \leq \frac{4(1-\alpha) \cos ^{2} \beta}{(n-1)^{2}(1-\lambda)^{2}}\left\{1-\alpha+\sum_{k=2}^{n-1} B(k, j, \alpha)\right\} \tag{21}
\end{equation*}
$$

where
$B(k, j, \alpha)=\frac{(1+(k-1) \lambda)(k-\alpha(k-1) \lambda)}{\left((k-1)!(1-\lambda)^{k-1}\right)^{2}} \prod_{j=0}^{k-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}$.
We must show that the square of the right side of (20) is equal to the right side of (21) ; that is

$$
\begin{equation*}
\frac{\prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}}{\left[(n-1)!(1-\lambda)^{n-1}\right]^{2}} \tag{22}
\end{equation*}
$$

$$
=\frac{4(1-\alpha) \cos ^{2} \beta}{(n-1)^{2}(1-\lambda)^{2}}\left\{1-\alpha+\sum_{k=2}^{n-1} B(k, j, \alpha)\right\}
$$

for $n=3,4, \ldots$. After necessary calculations we can show that (22) is true for $n=3$ and proves our claim for $n=3$. Assume that (22) is valid for all k, $3<k \leq n-1$; then from (19) and (21) we obtain

$$
\begin{aligned}
& \left|A_{n}\right|^{2} \leq \frac{4(1-\alpha) \cos ^{2} \beta}{(n-1)^{2}(1-\lambda)^{2}}\left\{1-\alpha+\sum_{k=2}^{n-2} B(k, j, \alpha)+B(n-1, j, \alpha)\right\} \\
& \left|A_{n}\right|^{2} \leq \frac{4(1-\alpha) \cos ^{2} \beta}{(n-1)^{2}(1-\lambda)^{2}}\{1-\alpha \\
& \\
& +\sum_{k=2}^{n-2} \frac{(1+(k-1) \lambda)(k-\alpha(k-1) \lambda)}{\left((k-1)!(1-\lambda)^{k-1}\right)^{2}} \prod_{j=0}^{k-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2} \\
& \left.\quad+\frac{(1+(n-2) \lambda)(n-1-\alpha(n-2) \lambda)}{\left((n-2)!(1-\lambda)^{n^{-2}}\right)^{2}} \prod_{j=0}^{n-3}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}\right\} \\
& =\frac{\prod_{j=0}^{n-3}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}}{\left((n-2)!(1-\lambda)^{n-2}\right)^{2}}\left\{\frac{(n-2)^{2}}{(n-1)^{2}}\right. \\
& =\frac{n_{j=0}}{\prod_{j=0}^{n-3}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}} \underset{\left((n-1)!(1-\lambda)^{n-1}\right)^{2}}{ }\left\{(n-2)^{2}(1-\lambda)^{2}\right. \\
& \left.\quad+4 \frac{(1+(n-2) \lambda)(n-1-\alpha(n-2) \lambda)}{(n-1)^{2}(1-\lambda)^{2}}\right\} \\
& \quad=\frac{1}{\left((n-1)!(1-\lambda)^{n-1}\right)^{2}} \prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2} .
\end{aligned}
$$

From equality (11) and (12), we get the desired result.

3. Corollaries and consequences

By choosing appropriate values of μ, b, m, k in Theorem 4 above, we obtain the corresponding results for several subclasses of S.
Corollary 3.1. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in S(\beta, \alpha, \lambda)$, then

$$
\left|a_{k}\right| \leq \frac{1}{(n-1)!(1-\lambda)^{n-1}} \prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|
$$

Corollary 3.2. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in L(\beta, \alpha, \lambda)$, then

$$
\left|a_{k}\right| \leq \frac{1}{n!(1-\lambda)^{n-1}} \prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|
$$

Corollary 3.3. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in B_{\vartheta}(\beta, \alpha, \lambda)$, then

$$
\left|a_{k}\right| \leq \frac{1}{n!(1-\lambda)^{n-1}}\left(\frac{1+\vartheta}{n+\vartheta}\right) \prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|
$$

Corollary 3.4. Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in I^{\sigma}(\beta, \alpha, \lambda)$, then

$$
\left|a_{k}\right| \leq \frac{1}{n!(1-\lambda)^{n-1}}\left(\frac{2}{n+1}\right)^{\sigma} \prod_{j=0}^{n-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|
$$

In addition, if $f(z) \in \mathcal{G}_{0,0}^{1,2}(\beta, \alpha, 0)$ or $f(z) \in \mathcal{G}_{0,0}^{1,2}(\beta, 0,0)$, then we get the results in Theorem 1.2 and Theorem 1.4, respectively.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple region, Ann. Math. 17 (1915), no. 1, 12-22.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[3] L. Bieberbach, Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten, S. B. Preuss. Akad. Wiss. 1: Sitzungsb. Berlin 38 (1916), 940-955.
[4] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152.
[5] J. Choi and H. M. Srivastava, Certain families of series associated with the HurwitzLerch zeta function, Appl. Math. Comput. 170 (2005), no. 1, 399-409.
[6] C. Ferreira and J. L. Lopez, Asymptotic expansions of the Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 298 (2004), no. 1, 210-224.
[7] M. Garg, K. Jain, and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 803-815.
[8] Y. C. Kim and H. M. Srivastava, Some subordination properties for spirallike functions, Appl. Math. Comput. 203 (2008), no. 2, 838-842.
[9] R. J. Libera, Univalent α-spiral functions, Canad. J. Math. 19 (1967), 449-456.
[10] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), no. 3, 725-733.
[11] S.-D. Lin, H. M. Srivastava, and P. Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 817-827.
[12] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Integral Transforms Spec. Funct. 23 (2012), no. 2, 97-103.
[13] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A 12 (1983), no. 1, 153-159.
[14] J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the class of strongly starlike and convex functions, J. Math. Inequal. 3 (2009), no. 1, 129-137.
[15] D. Răducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 933-943.
[16] L. Spaĉek, Contribution à la théorie des fonctions univalentes, Časopis Pĕst. Mat. 62 (1932), 12-19.
[17] H. M. Srivastava and A. A. Attiya, An integral operator associated with the HurwitzLerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), no. 3-4, 207-216.
[18] H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[19] H. M. Srivastava and S. Owa, A note on certain subclasses of spiral-like functions, Rend. Sem. Mat. Univ. Padova 80 (1988), 17-24.
[20] Q.-H. Xu, C.-B. Lv, N.-C. Luo, and H. M. Srivastava, Sharp coefficient estimates for a certain general class of spirallike functions by means of differential subordination, Filomat. 27 (2013), no. 7, 1351-1356.
[21] Q.-H. Xu, C.-B. Lv, and H. M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput. 219 (2013), no. 12, 7000-7011.

Tugba Yavuz
Department of Mathematics
Gebze Technical University
Gebze, Kocaeli Turkey
E-mail address: tyavuz@gtu.edu.dr

