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SMALL BALL AND LARGE DEVIATION
PROBABILITIES ESTIMATES FOR GAUSSIAN
PROCESSES WITH STATIONARY INCREMENTS

SEAUNG-HYUNE LEE, YONG-KAB CHO1 AND HO-SE OH

ABSTRACT. In this paper we obtain sharp upper and lower bounds
of small ball and large deviation probabilities for the increments of
Gaussian processes with stationary increments, whose results are
essential to establish Chung type laws of iterated logarithm.

1. Introductiqn

Recently, the upper and lower bounds of small ball probabilities for
Gaussian processes have been studied in several situations by many
authors: Shao [9], Kuelbs, Li and Shao [6], Shao and Wang [11], Mon-
rad and Rootzén (8], Talagrand [13], Shao [10], Kuelbs and Li [5] and
Li and Shao (7], etc. o

Among the above recent results, Shao [9] proved the following fun-
damental theorem on the upper and lower bounds of small ball prob-
abilities for a Gaussian process:

THEOREM 1.1. Let {X(t),0 < t < 1} be a real-valued Gaussian
process on the probability space (R, S, P) with mean zero, stationary
increments and X(0) = 0. Put o%(h) = E{X(t+h) - X(t)}?, 0< t <
t+h < 1, where 0%(h) is nondecreasing and concave on [0,1]. Then
we have

(1.1) P{Os<1:1<>1 1 X(t)] < 0(:6)} < 2exp(-0.17/m),
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(1.2) P{ sup |X(t)] < o(z) + 6e /:o a(me_yz) dy} > exp(—2/x>

0<t<1
for every z € (0,1).

On the other hand, Choi and Lin [1] proved the following large
deviation probability theorem which is a version of Fernique lemma
[2] for Gaussian processes with stationary increments: Let D = {t :
t = (t1, - ,tn),a; <t; < b;,i=1,2,---,N} be a real N-dimensional
parameter space. We assume that the space D has the usual Euclidean
norm | - ||, that is, ||t —s|® = Zf’zl(ti —5;)%. Let {X(t),t €D} bea
real-valued separable Gaussian process with EX (t) = 0. Suppose that

0<swpE(X(t)’=T?<00, T>0,
teD
and
B{X(t) - X(s)}* < 2(lIt —sl),

where ¢(+) is a nondecreasing continuous function such that

/ @(e“yz)dy < 00.
0

THOEREM 1.2. (1] Let {X(t), t € D} with I and ¢(-) be given as
in the above statements. Then, for A > 0, z > 1 and A > /2N log 2,
we have

PlowX(®)> o{T + 2v2+DA[ w(VEAZ V) dy} )

teD

N
b; — a; 2
< N z i3 -z /2
<(2 +¢)(g( = v1))e
where aV b = max{a,b} and ¢ = Y or  exp{—2""1(A? — 2N log 2)} <
0o.

It is well known that such kinds of small ball and large deviation
probabilities are the key steps in establishing Chung type laws of iter-
ated logarithm. The main aim of this paper is to develop the above
Theorems 1.1 and 1.2 and apply to another types with two “sups” for
the increments of the Gaussian process and to obtain some Chung type
laws of iterated logarithm as their applications.
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2. Upper and lower bounds of probabilities

Let {X(t), 0 < ¢t < 1} be an almost surely continuous Gaussian
process on the probability space (2, S, P) with mean zero, stationary
increments and X (0) = 0. Put 02(h) = E{X(t+h) = X(t)}?, 0 <t <
t+h < 1, where (") is a nondecreasing function on [0, 1]. Throughout
this paper we always assume that X(-) and o(-) are as in the above
statements. First we shall consider upper bounds of small ball proba-
bilities for the increments of the Gaussian process X(-). To prove our
results, we need the following lemmas:

LeEMMA 2.1. [9] Let {X(t), 0 <t < 1} be an almost surely contin-
uous, centered Gaussian process with X (0) = 0 and stationary incre-
‘ments
o2(jt - s|) = E{X(t) - X(s)}3, 0<t#s<1
Assume also that ¢%(-) is nondecreasing and concave on [0,1]. Then
we have

b 9 V2z/o(tir1—1t:) 2
. < = -t /2
e ) < 12 [ e

for every 0 =tg < t; <tg < --- <tpy1 <1 and for every z > 0.
LEMMA 2.2. [12] Let {&, i =1,2,---,n} and {n;, i=1,2,--- ,n}
be sequences of jointly standardized normal random variables with

covariance(&;, £;) < covariance (1:,7;), % # j. Then for any real num-
bers ui,ug, - ,Un,

P{§ <y, §=1,2,-- ,n}< P{nj <uj:j=1,2,---,n}.

LEMMA 2.3. [4] Let {Y(t), t > 0} be a separable Gaussian process
with mean zero and finite variances. Then

P{D<s;1£oo E;—(%)—‘ <1, [Y(t)| < z(to)}

Y )]
> P sup ——= <13 PYY ()] < x(t
> P{ swp Lot <1} P{IY(to)] < a(to)}
for every z(t) > 0,z(to) > 0,t0 > 0.

The following Theorems 2.1 and 2.2 are another versions of (1.1) in

Theorem 1.1 which have two “sups” for the increments of a Gaussian
process.
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THEOREM 2.1. Let {X(t), 0 <t < 1} be an almost surely contin-
uous, centered Gaussian process with X (0) = 0 and stationary incre-
ments o%(|t — s|) = E{X(t) — X(s)}?, 0 <t # s < 1. Assume also
that 02(-) is nondecreasing and concave on [0,1]. Then

P{ sup sup |X(t+5)~X(s)| <o(a)
0<s<1-h 0<t<h

<on(-011(31))

for every 0 < x < h.

Proof. For any 0 < z < h, put U; = X((¢ + 1)z) — X(iz), ¢ =
0,---,[(1 — h)/z], where |-] denotes the integer part. It follows from
the relation ab = (a® + b% — (a — b)%)/2 that, for I = |i — j| > 1,

covariance(U;,U;) = E(U;U;)
=E{X((+12)X((j + Dz)} - E{X((i + )z) X (jz)}
2.2) - BE{X(iz)X((j + 1)z)} + E{X (i2)X (jz)}

= %{(02((1 + )z) — o?(lx)) — (62(lz) — o?((1 — 1)_,3))}
<0

(2.1)

because 02(h) is concave. In order to apply Lemma 2.2, set & =
Ui/o(z) in Lemma 2.2 and let {; be independent standard normal ran-
dom variables. From (2.2), covariance(§;,§;) < 0 = covariance({s, (5),
i # j. Applying Lemma 2.2, we have

P{ sup sup |X(t+s)—X(s) < a(x)}
0<s<1-h0<t<h

< v
< P{ogigl[r(lffh)/z] Ozlggh I X (t+ix) — X(ix)| < O’(:Z))}
<P N

23 {OSisI[r(l?fh)/x] [ X (2 + iz) — X(iz)| < a(:c)}

U; < o(x)} - P{

SP{ max max & < 1}
0<i<[(1—h)/z] 0<i<l(1—h)/z]

- P{ogigr[r(lfi(h)/x] G < 1} P{CO <L Ga-ny/e) < 1}
1-h

< (W)™ < exp(-0.17 (==2)),
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where ®(y) = 7"15; Y e 2 de. ]

For 0 <z < 1, let 0%(z) = 2%%,0 < @ < 1/2. Then 02(z) is a
nondecreasing and concave function of z, but the converse is not true
in general. It is interesting to compare upper bounds of (2.1) and (2.4)
below. Moreover, the variance function 0(z) = z?* (1/2 < a < 1) in
(2.5) below, is of the convex type on (0,1].

THEOREM 2.2. Let {X(t), 0 < t < 1} be an almost surely contin-
uous, centered Gaussian process with X (0) = 0 and stationary incre-
ments

o?(|t — s) := B{X(t) - X()}* = |t — s

for0 < a<1,0<t#s<1. Then

P{ sup sup | X(t+s)— X(s)|§x°‘}
0<s<1-h0<t<h

(2.4) < exp{—z(—-—;—ﬁ) (1 —‘I’(\/g))}
< exp{~0.317(l';—h)}

for every 0 <z < h and 0 < @ <1/2, and

P{ sup  sup |X(t+s)— X(s)] < wa}
0<s<1—-h0<t<h

<en{-(*5=) (1-9(29)))

forevery0 <z <hand1/2 <a < 1.

(2.5)

Proof. (2.4): Asin (2.3), we have

P{ sup sup [X(t+ s)— X(s)] Sxa}
(2.6) 0<s<1~h0<t<h
< P{0< g (1 X e ]!X((z-i- )z) - X(iz)| < « }
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For any 0 < z < h, set U; = X((i + 1)z) — X(iz), 0 < i < [(1 — h)/z].
Then it follows that
E{Ui+1 - U;}?
= 2z%* — 2E{X((i + 2)x) X ((i + 1)z)
- X((G+2)x)X (5z) — X2 (( + 1)z) + X (( + V)z) X (iz)}
— 21,204 _ {_$2a + (2w)2a _ x2a} — (4 _ 4a)x2a.
Applying Lemma 2.1 for

X(ti)zU’i, i:Oal,"' 1n(= [(l_h)/x])a
o(tip1 — ts) = VE{X (tiy1) — X (t:)}2 = V4 - 492°,

we have
. , — - < a
P{osz'sr[lr(lfli(h)/m]'X((Z +1)z) - X(ir)| <= }
[(A—-h)/=] V2z® | /AT
< H g/ e~ /2 gt
N m™Jo
(2.7) i=0

_ (2@( 4—:‘?,40) B 1)[(1—h)/'z]+1

ool (1) (- o/ 55}

The inequalities (2.6) and (2.7) yield (2.4).

(2.5): Let U; = X((z+ 1)z) — X (iz), 0 < ¢ < [(1 — h)/z], and set
n; = Ugj+1 — Uzj, 0<j < [(1 - h—2)/(22)]. Then

En;® = (4—4%)z** and
1 o oa o N
Engnj = —5[6(215 —i))** + (215 — i + 2)*
+ (215 — i —2)** —4(2lj —i| + 1)**
— 4(2]j — 4] - 1)**]z**
<0, i J.
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Thus by Lemma 2.2, we obtain

P{ sup sup |X(t+s)—X(s)] <z}

0<s<1-h0<t<h

< P{ max
0<i<[(1-h)/x]

< p{ Ins) < 227}

max
0<5<[(1-h—2)/(22)]

<P . < @
= {ogsuﬁlf?’fz)/<zm>1"] <27}

—h~z)/(2x)
{‘I’(ﬁﬂ(l o

IA

<en{-(5) (- 2(;=5

X ((+1)2) ~ X (iz)] < 2°}

515

O

Let us next consider lower bounds of small ball probabilities on the
two-parameter Gaussian process. In the proofs of the following Lemma
2.4, we use the same techniques as the proof of Lemma 2.3 in Shao [9]

to which one-parameter Gaussian process is referred.

LEMMA 2.4. Let {Y(s,t), s > 0,t > 0} be an almost surely con-
tinuous, centered 2-parameter Gaussian process with Y(0,0) = 0 and

stationary increments

E{Y(S,,t’) ——Y(s",t”)}2 < 4.201{(8/_8//)2 + (t/_t//)Z}a, 0O<a<l.

Then

P{ sup  sup lY(s,t)]Sa:—i—Ze?’/z(%)a(l-i-

0<s<1—h0<t<h

> e 7 {20 (z/(2{4h - b +2}°/%)) ~ 1

for every R>1/h and 0 < z < h.
Proof. Let

‘= {tReei] e . = [sReei] e
"l e JRe? T L e JRe’

}(Rh+1)(R(1—h)+1)
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where [-] denotes the integer part. Note that

1Y (5,8)] < Y (s0,t0)] + Y (5,2) — ¥ (s0, t0)]

2.8 ad
29 < Y (sort)l + 3 ¥ (sita, tirr) = ¥ (o5, o).
i=0
Setting
oy = e/ 2olre (1= IRYE  §=0,1,2,-,
we have
Zx = ¢3/2 9l+a (l)"‘ 1 3/29lte (_6_)"‘ ie—ae’+%
R R
i=1
1\« e\N. oo z, z
< 3/2 21+a = + 3/221+a e / e—%e +% dz
(2.9) ¢ (R) (R) A
< ¢3/2 gl (_11%)0 1 32 91ta (%)"‘ i_e—a
1

-1 () 0+ 3)

Note that, for : =0,1,2,---,

E{Y (sisn,tiv1) — Y(si,t:)}? < 417 (e~ /R)>,
Card{IY(si_H, 'H-l) - (Sz, )‘ 0 < L] < 1-— h 0 < t < h}

< ((1 - h)Re +1) (hRee + 1),
1—y>e ™% for 0<1y <(2/3)In(3/2),

(2.10)

and for random variables X and Y, we have
(211) P{X+Y <a+b} > P{X<aY <b}, a>0, b>0.

From Fernique ([3], P.71), we see that the inequality

4 1 2
2.12 P >1—-——— —u’/2
(2.12) (W) 21-3 ,——27T(U+1)6
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holds for all u > 0. Let Z denote the standard normal random variable.
Then it follows from (2.8) ~ (2.12) and Lemma 2.3 that

Pl s s V(s 0l <o r2¢2(2) (14 1))

> P{ sup  sup |Y(sp,%0)| < =,
0<s<1-h0<t<h

sup  sup {Y(sit1,tiv1) — Y(ss, )| < 4, 2':=;O, 1,2,--- }
0<s<1—h0<t<h . .

> P{ sup sup |Y(so,t0)| <z}
0<s<1—h0<t<h

0o i
X g)(P {‘Z < Fita(l-< /R)a

=P max | max Iv(Z,2)| <o)

bt ia3 7\ (Bhes =141y (R(-R)e®
X g(P{lZI <e })

> P

}) (Rhec”l —1+1)(R(1—h‘)&ei+l =“t41)

i+1__1+1)

ogjgn[lz?()i-h)]og%?{}fzh] Y(;—%’ %)’ = x}

-1 gi+3

) e 2 eitl_ i+
* e (_1'64:) oy Rhe” T T D(R(L-R)e T + 1))
=

Rh+1}{(R(1—~h)+1
> (P{|Z| < z/(2{4h? - 4h + 2}a/2)})( RO (=)

_R? « Rh+1)(R(1—h)+1
= e T {20 (2/(2{4h? - 4h + 2}2/2)) — 1} FATDEADHL, -

THEOREM 2.3. Let {X(t), 0 <t < 1} be an almost surely contin-
uous, centered Gaussian process with X(0) = 0 and stationary incre-
ments

E{X(t)-X(s)}’=|t-s/**, 0<a<l.
Then
P{ sup sup |X(t+s)— X(s)

0<s<1-h0<t<h

(2.13)
<ao (1422 (14 i—))}
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1/z z° (2+1)(3zE+D)
> e {2q)(2{4h2 —4h+ 2}a/2> B 1}
for every 0 < x < h.
Proof. Let Y(s,t) = X(t+s)— X(s), 0<s<t+s<1 Then
E{Y(s,t) - Y(s",t”)}
<2B{(X(¢' + ') — X(t" +8"))* + (X(s) — X(s"))?}
<Al — "]+ |8 — )2 <4-2¢{(s' —s") 2 + (¢ —t")*}".
From Lemma 2.4 with R = 1/z, it follows that

P{ suwp sup |X(t+s)~X(s)l
0<s<1—-h0<t<h

(2.14) <z°® (1 4 glta g3/2 (1 4 é))}
> et/ {2¢(2{4h2 ZZ n 2}a/2) - 1}(%+1)(l;_h+1)
for every 0 < z < h. 5

EXAMPLE 2.1. Setting h = 1/2 in Theorem 2.3, we have

Pl i 0o Xl (10200 (14 )}
/22 x> (35+1)° 1
> e~1/s {2@(7)—1} , 0<a<3

COROLLARY 2.1. Let {X(t),0 <t < 1} be a fractional Brownian
motion of order 2 with 0 < a < 1, that is, let {X(t),0 <t <1} be
an almost surely continuous, real- Valued Gaussian process with mean
zero, X(0) = O and stationary increments E{X(t + h) — X(t )} =
h?¢ 0 <t <t+h<1. Then, for every 0 <z < h,

exp(~C%/x %) {20 (o) - 1}2h<0a/m>2/°

21+a/20a
(2.15) < P{ sup sup | X(t+s)—X(s)| < w}
0<s<1-h0<t<h
- exp{—0.317(1 — h)z~/}, 0<a<l1/2,

- { exp{—0.5((1 —h)z~/* - 1)K,}, 1/2<a<],
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where C, = 1 4 21+ e3/2(1 + é) and

Kazl—é(\/%)w.

Proof. In Theorem 2.3, set z = Cpz®, 0 < a < 1. Noting that

Ee)(5ten <R ocees

and 4h® —4h +2 < 2 for 0 < h < 1, we get the left hand side of (2.15).
The right hand side of (2.15) immediately follows from Theorem 2.2.01

Next we shall estimate upper bounds of large deviation probabilities
for the increments of the Gaussian process which applied Theorem 1.2,
whose results are also used to obtain the limsup theorems concerning
Chung type laws of iterated logarithm:

THEOREM 2.4. Let {X(t), t € [0,1]V} be an almost surely con-
tinuous, centered N-parameter Gaussian process with X(0) = 0 and
stationary increments o%(||t —sf|) = E{X(t) — X(s)}?, t #s € [0, 1)V,
where g (-) is a nondecreasing continuous, regularly varying function on
(0,1] with exponent o for some 0 < « < 1 at zero. Leta = (ay,- - - ,AN)
and a' = (aj,--- ,aly) be two vectors in (0,1)V. Then, for any € > 0
there exists a positive constant C. depending only on € such that

su sup
0<ocs o octea  o(al)

<A ) (& v pesren

for all u > 0.

p{ LGRS CIF!

Proof. Let D = {(s,t) : 0 <s<1-a,0 <t < a} bea2N-
dimensional space. In order to apply Theorem 1.2, we set

X(t+s) - X(s)

Y& ==—""man

(s,t) €D,



520 S. H. Lee, Y. K. Choi and H. S. Oh

and

20(v/22)

#l2) = el

Clearly, E{Y (s,t)} = 0 and I'? = sup(s ycp E{Y (s, t)}2 = 1. Letting
u=(s,t') and v = (s",t") in D, it follows that

z>0.

E{Y(u) -Y(v)}?
= ;2(—?‘:%12{ (X(t'+5) - X(t"+5") — (X(s) ~ X(s")) }2
< a—zfﬁ_aﬂﬁ{E{X(tl +s) - X(t" + s”)}2 + E{X(s) - X(s”)}2}
= —ﬁ{a"’(n(t' +) (¢ +50) + 0 (I8’ 1)}
2(,, o (VBVIF = o+ T =)

= ¢*(llu ~vl)).

For any € > 0 there exists a small constant ¢ = c(€) > 0 such that
oo 2
(2v2 + Z)A/ (V2N ca127Y ) dy < ¢/8,
0

where A > 2¢/N log 2. Indeed, for any € > 0 there exists a small ¢ > 0
such that

o0 o
/ o(V2N ca;27¥") dy < 2(2VN ¢)® / 2=’ gy
0 0

= (2vVN o), /al:g 5 < (¢/8)/((2v2 +2)4).

Let u = v(1 + (¢/8)), v > 1. Then it follows from Theorem 1.2 that

P{ sup |Y(s,t)| > u}
(s,t)eD

< 2P{ sup Y(s,t) > v(l +(2V2+ 2)A/0°° P(V2N car2™"") dy)}

(s,t)eD
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<2 ) (II{(5v1) (2 V)

=

calfl{(52 v (@ v

where C. is a positive constant depending only on ¢ > 0. In case
0 < u < 1, the result follows immediately if we take C. large enough.[J

The following Corollary 2.2 is immediate from Theorem 2.4.

COROLLARY 2.2. Let {X(t), 0 < t < 1} be an almost surely
continuous, centered Gaussian process with X(0) = 0 and stationary
increments '

o(jt - s|) = B{X(t) - X(s)}}, 0<t#s<1,

where o(-) is a nondecreasing continuous, regularly varying function
on (0,1] with exponent a for some 0 < & < 1 at zero. Then, for any
€ > 0 there exists a positive constant C. depending only on € such that

P{ sup  sup |X(t+s)-X(s)|2cr(:v)}
0<s<1-h 0<t<h

(32 v1)en(-5=(22))

for every z > 0.

Using Corollaries 2.1~ 2.2 and the relation 1 — e™* > ze~%, z > 0,
we have the following

COROLLARY 2.3. Let {X(t), 0 <t < 1} be a fractional Brownian
motion of order 2« with 0 < o < 1. Then, for any ¢ > 0 there exists a
constant C. > 0 such that

1-h 1 /x\2
c(Fvi)ew(-5(3))
ZP{ sup  sup |X(t+s)— X(s) Zz}
0<s<1—h 0<t<h
0.317(1 - h)z~Y*exp{~0.317(1 — h)z~ ¥/}, 0<a<1/2,
> ¢ 0.5((1 = k)~ ~ 1) K4 exp{—0.5((1 — h)~Y* -~ 1)K, },
1/2<a<1,
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for every 0 < x < h.

Corollaries 2.1 and 2.3 represent upper and lower bounds of small
ball probabilities with converse inequalities each other.

3. Applications

In this section we shall establish some Chung type laws of iterated
logarithm as applications of the results in section 2.

The following theorems are referred to the fractional Brownian mo-
tion. It is interesting to compare the slight changes of normalizing
factors in denominators of the following (3.1)~(3.3):

THEOREM 3.1. Let {X(t),0 < t < 1} be a fractional Brownian
motion of order 2 with 0 < a < 1. Then we have

o X (t+ ) — X(s)]
3.1} liminf su su
(31) linipt sup = SUD ({0317 — ()h/log|logh) =

a.S.

for some 0 < o < 1/2, and

L | X(t+s) — X ()]
liminf sup sup o
h=0 g<eci-ho<t<h{(0.5 — ()hK,/((0.5 — {) K4 + log| log h|)}
(3.2) >1 as.

for some 1/2 < a < 1, where { > 0 is small enough and

Ka=1—q>(\/%) > 0.

Proof. (3.1): From Theorem 2.2(2.4), we have, for any 0 < e <1,
P{ sup sup |X(t+s)— X(s)] <z*(1- e)}

0<s<1-h0<t<h
< exp(—0.317h/z), O0<z<h<1/2.

Choose _
(0317 - Q)h

d h=e",
log | log h| an ¢
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where n(> 2) is an integer. Then we have

SP{ sw s [X(t+s)-X(s)

0<s<1—e " 0<Lt<e™ "

< (w)"(l _ e)}

logn
0.317
Szn: (0317 clogn)<°°'

So, the Borel-Cantelli lemma implies that

| X(t+5) — X(s)|
liminf  sup sup
n=00 g<s<i—e—n o<t<e—n ((0.317 — C)e—"/logn)

>1-—c¢ a.s.

This gives the result (3.1).
(3.2): From Theorem 2.2(2.5), we have, for any 0 < € < 1,

P{ sup - sup |X(t+s)~— X(s)|§xa(1——e)}
0<s<1-h0<t<h

Sexp( 05(-}1-—1)}{ ) 0<z<h<1/2
Choose

(0.5 - )hK,
(0.5 — ¢)Kq4 + log |log |

x= and h=e", n2>1.

Then we have

ZP{ sup  sup |X(t+s)— X(s)|
0<s<l—e " 0<t<e™ ™

< (af?*" R Fiogm) 19}
< Z exp(

So, the result (3.2) follows from the Borel-Cantelli lemma. O

log n) < 00.
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THEOREM 3.2. Let {X(¢),0 < ¢t < 1} be a fractional Browman
motion of order 2a with 0 < a < 1. Then we have

limsup sup sup [X(t+3) = X(s)]
(3.3) heso 0<a<1-hozeon he(2(log(1/h) + log|log hl)}1/2
<1 as.

Proof. From Corollary 2.2, it follows that for any small € > 0 there
exists a positive constant C. such that, for every z > 0,

P{ sup  sup |X(t+s) - X(s)| Za:a(l-}—e)}
0<s<1-h0<t<h

<czen(-7 (7))

Set ¢ = h{(2+¢) log(1/h)+(2+2¢)log | logh|}1/(2a) andh=e ™, ne
N. Then we have

ZP{ sup sup |X(t+s)— X(s)|

0<sL1l—e— " 0<t<Le ™

> e ™{(2+ e)n+ (24 2¢) logn}1/2(1 + e)}

< CEZe"exp(—E%{@—i- e)n + (2 + 2¢) logn}) < 00.

Since € > 0 is arbitrary, the result (3.3) immediately follows from the
Borel-Cantelli lemma. a
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