• Title/Summary/Keyword: shape of bubble

Search Result 139, Processing Time 0.029 seconds

Studies on Ventilation Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 가스 분사량 제어 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.

Laser Microfabrication for Silicon Restrictor

  • Kim, Kwang-Ryul;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • The restrictor, which is a fluid channel from a reservoir to a chamber inside a thermal micro actuator, has been fabricated using ArF and KrF excimer lasers, Diode-Pumped Solid State Lasers (DPSSL) and femtosecond lasers for a feasibility study. A numerical model of fluid dynamics for the actuator chamber and restrictor is presented. The model includes bubble formation and growth, droplet ejection through nozzle, and dynamics of fluid refill through the restrictor from a reservoir. Since an optimized and well-fabricated restrictor is important for a high frequency actuator, some special beam delivery setups and post processing techniques have been researched and developed. The effects of variations of the restrictor length, diameter, and tapered shapes are simulated and the results are analyzed to determine the optimal design. The numerical results of droplet velocity and volume are compared with the experimental results of a cylindrical-shaped actuator. It is found that the micro actuators having tapered restrictors show better high frequency characteristics than those having a cylindrical shape without any notable decrease of droplet volume. The laser-fabricated restrictors demonstrate initial feasibility for the laser direct ablation technique although more development is required.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

Fundamental Studies for Ventilated Supercavitation Experiments in New High-speed Cavitation Tunnel (신조된 고속 캐비테이션 터널에서 환기 초공동 실험 수행을 위한 기초 연구)

  • Paik, Bu-Geun;Kim, Min-Jae;Jung, Young-Rae;Lee, Seung-Jae;Kim, Kyoung-Youl;Ahn, Jong-Woo;Seol, Han-Shin;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.330-340
    • /
    • 2018
  • In the present works, the High-speed Cavitation Tunnel (HCT) has been designed and manufactured to have the large test section to conduct various supercavitation experiments. The large amount of air ventilated behind a cavitator produces lots of tiny bubbles, which prevent clear observation of supercavitation at the test section. To collect small bubbles effectively, a bubble collecting section of large volume is equipped upstream of the test section. HCT has the test section dimension of $0.3^H{\times}0.3^W{\times}3.0^L\;m^3$ and provides maximum flow speed of 20.4 m/s at the test section. The blockage and Froude effects on the ventilated supercavitation are investigated successfully at the test section. The basic studies such as the supercavitation evolution, drag measurements and cavity shape extraction with air flow rate are also carried out in HCT.

Effective Heater-Area and Droplet-Volume Adjustable Microinjectors Using a Digitally Controlled Single Heater (단일 히터의 디지털 구동을 통한 유효 히터면적 변화 및 분사 액적크기 조절이 가능한 미소유체분사기)

  • Je Chang Han;Kang Tae Goo;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.67-73
    • /
    • 2005
  • The paper presents a single-heater microfluid injector, whose ejected droplet volume is adjusted by digital current path control for a single microheater. The previous droplet volume adjustable methods have used the digital current control for multiple heaters or the analog current control for a single heater, while the present method uses the digital current control for a single microheater. Two different microinjectors, having a rectangular heater and a circular hearter, are designed and fabricated in the chip area of $7.64\;mm{\times}5.26\;mm$. The fabricated microinjectors have been tested and characterized for the number, size, shape and lifetime of the generated bubbles as well as for the volume and velocity of the ejected droplets. The input power for the rectangular heater and the circular heater has been varied in the ranges of $8.7{\sim}24.9{\mu}W\;and\;8.1{\sim}43.8{\mu}W$, respectively. The projected area of the generated bubble has been changed in the ranges of $440{\sim}l,3600{\mu}m^2\;and\;800{\sim}3,300{\mu}m^2$ for the rectangular heater and the circular heater, respectively. The microinjector with the rectangular heater ejects three discrete levels of the droplet in the volume range of $9.4{\sim}20.7pl$ with the velocity range of $0.8{\sim}1.7m/s$, while the microinjector with the circular heater achieves five discrete levels of the droplet in the volume range of $7.4{\sim}27.4pl$ with the velocity range of $0.5{\sim}2.8m/s$.

FUV Spectral Images of the Vela Supernova Remnant: Comparisons with X-ray and $H{\alpha}$ images

  • Kim, Il-Joong;Seon, Kwang-Il;Min, Kyoung-Wook;Han, Wonyong;Edelstein, Jerry
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.99.2-99.2
    • /
    • 2012
  • We updated the far-ultraviolet (FUV) spectral images of the entire Vela supernova remnant (SNR) using newly processed FIMS/SPEAR data. In the present study, we compare the newly produced FUV images with the X-ray and $H{\alpha}$ images, and examine how the Vela SNR evolves and interacts with the ambient medium on a global scale. The comparison with X-ray images has revealed a FUV filamentary feature corresponding with the boundary of the northeast-southwest asymmetry of the X-ray shell. The relatively low O IV] ${\lambda}1404$ to O III] ${\lambda}{\lambda}1661$, 1666 ratio estimated on the FUV filament is compatible with the previous proposal that the observed asymmetry of the Vela SNR could be due to the ${\gamma}2$ Velorum stellar wind bubble (SWB). The southwest FUV features surrounding a faint extended X-ray region are characterized as the region where the Vela SNR is interacting slightly stronger with ambient mediums within the dim X-ray southwest section. From a comparison with the $H{\alpha}$ image, we identify a ring-like $H{\alpha}$ feature overlapped with an extended hot X-ray feature of similar size and two local peaks of C IV ${\lambda}{\lambda}1548$, 1551 emission. Their morphologies are consistent with the expected shape when the $H{\alpha}$ ring is in direct contact with the near or far side of the Vela SNR. We suggest that the B3V-type star HD 76161 found at the center of the $H{\alpha}$ ring would be the exciting source of the H II region.

  • PDF

Development and Basic Performance Characterization of Neutralized Fabric Filter (제전사여과포의 개발 및 기초성능 규명)

  • 박영옥;구철오;임정환;김홍룡;손재익;이영우
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 1998
  • A neutralized fabric filter of which major raw materials were polyester and stainless steel fibers was developed and its physiochemical properties and basic filter characteristics were investigated. Four finds of dusts generated in the typical domestic industry were used, which were coke dust from a steel manufacturing process, cement dust from a cement manufacturing process, flu ash from a fluidized-bed combustor, and incinerator ash from a waste plastics incinerator. The physicochemical properties of the neutralized fabric filter were analyzed in terms of changes in tensile strength and initial elastic modulus under $SO_2$ and $NO_2$ atmospheres, mean flow pore pressure, bubble point pore diameter, mean flow pore diameter, and pore size distribution. In addition, the pressure drop, dust penetration, and figure of merit for the fabric filter were investigated in a bench-scale filter testing unit. The pressure drop increased as the filtration velocity and dust loading increased, and its increasing shape depended on the type of dust. The dust penetration rapidly decreased as the dust loading increased irrespective of the type of dust. The figures of merit for the fabric filters increased in the early stage of filtration and then showed rapid decreases followed maintaining a constant level.

  • PDF

Virtual learning environments for improving spatial sense of young children (유아의 공간감각 향상을 위한 가상학습공간 구축)

  • Cha, Eun-Mi;Kim, Hyun-Ju;Lee, Kyung-Mi;Lee, Jung-Wook;Kim, Eun-Jung;Lee, Soo-Jung;Hong, Eun-Ju
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.783-787
    • /
    • 2006
  • The 'spatial senses' mean environments and the instinctive responds to objects in the environments. The infancy is an important period to develop the basic capacity of the 'spatial senses'. Since young children can develop the 'spatial senses' throughout the actual and active search, it is essential for them to do experience through their physical actions. This paper proposes four motion based-contents for improving the spatial sense of young children: a bubble game, a cyber goalkeeper game, a mud-huddle game, and a shape recognition game. The proposed four games are implemented to the virtual learning environments. Also, the virtual learning environments utilize the realistic interfaces which can recognize motions of young children and then interact with the games as they do the movement at the virtual environments provided. Using the realistic interfaces not only develops young children's spatial sense but also offers them the pleasure and interest of self-study.

  • PDF