DOI QR코드

DOI QR Code

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions

알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가

  • Kim, Min-Yeong (Department of Electrochemistry, Surface Technology Division, Korea Institute of Materials Science(KIMS)) ;
  • Lee, Jong Won (Department of Electrochemistry, Surface Technology Division, Korea Institute of Materials Science(KIMS)) ;
  • Cho, Soo Yeon (Department of Electrochemistry, Surface Technology Division, Korea Institute of Materials Science(KIMS)) ;
  • Park, Da Jung (Department of Electrochemistry, Surface Technology Division, Korea Institute of Materials Science(KIMS)) ;
  • Jung, Hyun Min (Department of Electrochemistry, Surface Technology Division, Korea Institute of Materials Science(KIMS)) ;
  • Lee, Joo Yul (Department of Electrochemistry, Surface Technology Division, Korea Institute of Materials Science(KIMS)) ;
  • Lee, Kyu Hwan (Department of Electrochemistry, Surface Technology Division, Korea Institute of Materials Science(KIMS))
  • 김민영 (한국재료연구원 표면기술본부 전기화학연구실) ;
  • 이종원 (한국재료연구원 표면기술본부 전기화학연구실) ;
  • 조수연 (한국재료연구원 표면기술본부 전기화학연구실) ;
  • 박다정 (한국재료연구원 표면기술본부 전기화학연구실) ;
  • 정현민 (한국재료연구원 표면기술본부 전기화학연구실) ;
  • 이주열 (한국재료연구원 표면기술본부 전기화학연구실) ;
  • 이규환 (한국재료연구원 표면기술본부 전기화학연구실)
  • Received : 2020.12.08
  • Accepted : 2021.01.14
  • Published : 2021.02.28

Abstract

Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

Keywords

Acknowledgement

This work was supported by the Miryang-si (PICN050)

References

  1. Y. Li, H. Dai, Recent advances in zinc-air batteries, Chemical Society Reviews, 43 (2014) 5257-5275. https://doi.org/10.1039/c4cs00015c
  2. V.S. Bagotsky, A.M. Skundin, Y.M. Volfkovich, Electrochemical power sources: batteries, fuel cells, and supercapacitors, John Wiley & Sons, Place Published, 2015.
  3. Y. Yang, G. Chen, R. Zeng, A.M. Villarino, F.J. DiSalvo, R.B. van Dover, H.D. Abruna, Combinatorial Studies of Palladium-Based Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells, Journal of the American Chemical Society, 142 (2020) 3980-3988. https://doi.org/10.1021/jacs.9b13400
  4. H. Gong, R. Yang, B. Yang, F. Li, L. Li, Boosting the catalysis of AuCuMo for oxygen reduction: Important roles of an optimized electronic structure and surface electrochemical stability, Journal of Alloys and Compounds, (2020) 155552.
  5. H. Wang, W. Luo, L. Zhu, Z. Zhao, B. E, W. Tu, X. Ke, M. Sui, C. Chen, Q. Chen, Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts, Advanced Functional Materials, 28 (2018) 1707219. https://doi.org/10.1002/adfm.201707219
  6. J. Wang, F. Chen, Y. Jin, R.L. Johnston, Highly active and stable AuNi dendrites as an electrocatalyst for the oxygen reduction reaction in alkaline media, Journal of Materials Chemistry A, 4 (2016) 17828-17837. https://doi.org/10.1039/C6TA07519C
  7. M.H. Naveen, N.G. Gurudatt, H.B. Noh, Y.B. Shim, Dealloyed AuNi dendrite anchored on a functionalized conducting polymer for improved catalytic oxygen reduction and hydrogen peroxide sensing in living cells, Advanced Functional Materials, 26 (2016) 1590-1601. https://doi.org/10.1002/adfm.201504506
  8. N. Zhang, X. Chen, Y. Lu, L. An, X. Li, D. Xia, Z. Zhang, J. Li, Nano-Intermetallic AuCu3 Catalyst for Oxygen Reduction Reaction: Performance and Mechanism, Small, 10 (2014) 2662-2669. https://doi.org/10.1002/smll.201400068
  9. N. Gao, C. He, M. Ma, Z. Cai, Y. Zhou, G. Chang, X. Wang, Y. He, Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor, Anal Chim Acta, 1072 (2019) 25-34. https://doi.org/10.1016/j.aca.2019.04.043
  10. M. Jiang, H.-R. Chen, S.-S. Li, R. Liang, J.-H. Liu, Y. Yang, Y.-J. Wu, M. Yang, X.-J. Huang, The selective capture of Pb2+ in rice phloem sap using glutathione-functionalized gold nanoparticles/multi-walled carbon nanotubes: enhancing anti-interference electrochemical detection, Environmental Science: Nano, 5 (2018) 2761-2771. https://doi.org/10.1039/c8en00879e
  11. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, The Journal of Physical Chemistry B, 108 (2004) 17886-17892. https://doi.org/10.1021/jp047349j
  12. Z. Duan, G. Henkelman, Theoretical resolution of the exceptional oxygen reduction activity of Au (100) in alkaline media, ACS Catalysis, 9 (2019) 5567-5573. https://doi.org/10.1021/acscatal.9b00955
  13. S. Strbac, R. Adzic, The influence of pH on reaction pathways for O2 reduction on the Au (100) face, Electrochimica Acta, 41 (1996) 2903-2908. https://doi.org/10.1016/0013-4686(96)00120-X
  14. S. Strbac, R. Adzic, The influence of OH- chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions, Journal of Electroanalytical Chemistry, 403 (1996) 169-181. https://doi.org/10.1016/0022-0728(95)04389-6
  15. D. Mei, Z. Da He, Y.L. Zheng, D.C. Jiang, Y.-X. Chen, Mechanistic and kinetic implications on the ORR on a Au (100) electrode: pH, temperature and H-D kinetic isotope effects, Physical Chemistry Chemical Physics, 16 (2014) 13762-13773. https://doi.org/10.1039/c4cp00257a
  16. V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces, Nature materials, 16 (2017) 57-69. https://doi.org/10.1038/nmat4738
  17. H. Gong, W. Zhang, F. Li, R. Yang, Enhanced electrocatalytic performance of self-supported AuCuCo for oxygen reduction and evolution reactions, Electrochimica Acta, 252 (2017) 261-267. https://doi.org/10.1016/j.electacta.2017.08.194
  18. G. Wang, L. Xiao, B. Huang, Z. Ren, X. Tang, L. Zhuang, J. Lu, AuCu intermetallic nanoparticles: surfactant-free synthesis and novel electrochemistry, Journal of Materials Chemistry, 22 (2012) 15769-15774. https://doi.org/10.1039/c2jm32264a
  19. X. Tan, S. Prabhudev, A. Kohandehghan, D. Karpuzov, G.A. Botton, D. Mitlin, Pt-Au-Co alloy electrocatalysts demonstrating enhanced activity and durability toward the oxygen reduction reaction, ACS Catalysis, 5 (2015) 1513-1524. https://doi.org/10.1021/cs501710b
  20. W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo, Y. Guo, G. Lu, Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation, Journal of the American Chemical Society, 139 (2017) 8846-8854. https://doi.org/10.1021/jacs.7b01784
  21. M.I. Awad, T. Ohsaka, An electrocatalytic oxygen reduction by copper nanoparticles-modified Au (100)-rich polycrystalline gold electrode in 0.5 M KOH, Journal of power sources, 226 (2013) 306-312. https://doi.org/10.1016/j.jpowsour.2012.11.010
  22. B.J. Plowman, L.A. Jones, S.K. Bhargava, Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition, Chemical Communications, 51 (2015) 4331-4346. https://doi.org/10.1039/c4cc06638c
  23. M. Wang, X. Yu, Z. Wang, X. Gong, Z. Guo, L. Dai, Hierarchically 3D porous films electrochemically constructed on gas-liquid-solid three-phase interface for energy application, Journal of Materials Chemistry A, 5 (2017) 9488-9513. https://doi.org/10.1039/C7TA02519J
  24. J. Niu, X. Liu, K. Xia, L. Xu, Y. Xu, X. Fang, W. Lu, Effect of electrodeposition parameters on the morphology of three-dimensional porous copper foams, Int. J. Electrochem. Sci, 10 (2015) 7331-7340.
  25. H. Zhang, Y. Ye, R. Shen, C. Ru, Y. Hu, Effect of bubble behavior on the morphology of foamed porous copper prepared via electrodeposition, Journal of The Electrochemical Society, 160 (2013) D441. https://doi.org/10.1149/2.019310jes
  26. H. Xu, B. Yan, J. Wang, K. Zhang, S. Li, Z. Xiong, C. Wang, Y. Shiraishi, Y. Du, P. Yang, Self-supported porous 2D AuCu triangular nanoprisms as model electrocatalysts for ethylene glycol and glycerol oxidation, Journal of Materials Chemistry A, 5 (2017) 15932-15939. https://doi.org/10.1039/C7TA04598K
  27. A.S. Nugraha, V. Malgras, M. Iqbal, B. Jiang, C. Li, Y. Bando, A. Alshehri, J. Kim, Y. Yamauchi, T. Asahi, Electrochemical synthesis of mesoporous Au-Cu alloy films with vertically oriented mesochannels using block copolymer micelles, ACS applied materials & interfaces, 10 (2018) 23783-23791. https://doi.org/10.1021/acsami.8b05517
  28. M. Kuhn, T. Sham, Charge redistribution and electronic behavior in a series of Au-Cu alloys, Physical Review B, 49 (1994) 1647. https://doi.org/10.1103/physrevb.49.1647
  29. B. Hvolbæk, T.V. Janssens, B.S. Clausen, H. Falsig, C.H. Christensen, J.K. Norskov, Catalytic activity of Au nanoparticles, Nano Today, 2 (2007) 14-18.
  30. P. Quaino, N. Luque, R. Nazmutdinov, E. Santos, W. Schmickler, Why is gold such a good catalyst for oxygen reduction in alkaline media?, Angewandte Chemie International Edition, 51 (2012) 12997-13000. https://doi.org/10.1002/anie.201205902
  31. F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. Munter, P.G. Moses, E. Skulason, T. Bligaard, J.K. Norskov, Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces, Physical review letters, 99 (2007) 016105. https://doi.org/10.1103/PhysRevLett.99.016105
  32. J.L. Fernandez, D.A. Walsh, A.J. Bard, Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M- Co (M: Pd, Ag, Au), Journal of the American Chemical Society, 127 (2005) 357-365. https://doi.org/10.1021/ja0449729
  33. S. Trasatti, O. Petrii, Real surface area measurements in electrochemistry, Pure and applied chemistry, 63 (1991) 711-734. https://doi.org/10.1351/pac199163050711