Browse > Article
http://dx.doi.org/10.4150/KPMI.2008.15.1.046

Laser Microfabrication for Silicon Restrictor  

Kim, Kwang-Ryul (National Core Research Center for Hybrid Materials Solution, Pusan National University)
Jeong, Young-Keun (National Core Research Center for Hybrid Materials Solution, Pusan National University)
Publication Information
Journal of Powder Materials / v.15, no.1, 2008 , pp. 46-52 More about this Journal
Abstract
The restrictor, which is a fluid channel from a reservoir to a chamber inside a thermal micro actuator, has been fabricated using ArF and KrF excimer lasers, Diode-Pumped Solid State Lasers (DPSSL) and femtosecond lasers for a feasibility study. A numerical model of fluid dynamics for the actuator chamber and restrictor is presented. The model includes bubble formation and growth, droplet ejection through nozzle, and dynamics of fluid refill through the restrictor from a reservoir. Since an optimized and well-fabricated restrictor is important for a high frequency actuator, some special beam delivery setups and post processing techniques have been researched and developed. The effects of variations of the restrictor length, diameter, and tapered shapes are simulated and the results are analyzed to determine the optimal design. The numerical results of droplet velocity and volume are compared with the experimental results of a cylindrical-shaped actuator. It is found that the micro actuators having tapered restrictors show better high frequency characteristics than those having a cylindrical shape without any notable decrease of droplet volume. The laser-fabricated restrictors demonstrate initial feasibility for the laser direct ablation technique although more development is required.
Keywords
Thermal micro actuator; Laser microfabrications; Femto-second lasers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Nantel, Y. Yashkir, S. Lee and B. Hockley: ICALEO 2001 Laser Microfabrications Conference (2001)
2 B. Burghardt, S. Scheede, R. Senczuk and H.-J. Kahlert: Appl. Phys. A, 69 [suppl.] (1999) S137   DOI
3 C. D. Meinhart and H. Zhang: J. of Microelectromechanical systems, 9 (2000) 67   DOI   ScienceOn
4 K. R. Kim and D. F. Farson: J. of Appl. Phy. 89 (2001) 681   DOI   ScienceOn
5 K. R. Kim, S. C. Ko and S. J. Shin: ICALEO 2001 Laser Microfabrications Conferences (2001)
6 C. T. Pan, Y. M. Kwang and C.W. Heieh: Sens. Actuators A: Phys., 122 (2005) 45   DOI   ScienceOn
7 M. Müllenborn, H. Dirac, J. W. Petersen and S. Bouwstra: Sens. Actuators A: Phys., 52 (1996) 121   DOI   ScienceOn
8 J. Bonse, S. Baudach, J. Krüger, W. Kautek and M. Lenzner: Appl. Phys. A, 74 (2002) 19   DOI   ScienceOn
9 S.G. Uyehata and E. S. Kolesar: Jr, J. Micromech. Microeng. 1 (1991) 171   DOI   ScienceOn
10 P. Chen, W. Chen, P. Ding and S. H. Chang: Inter. J. of heat and fluid flow, 19 (1998) 382   DOI   ScienceOn
11 N. Maluf, An introduction to Micro-electro-mechanical Systems Engineering, Norwood: Artech House, (2000) 97
12 M. Fiebig, M. Kauf, J. Fair, H. Endert, M. Rahe and D. Basting: Appl. Phys. A, 69 [suppl.] (1999) S305   DOI
13 P. M. Burke and T. L. Weber: IS&T's NIP 16 International Conference on Digital Printing Technology (2000)
14 B. Richerzhagen: ICALEO 2001 Laser Microfabrications Conference (2001)
15 J. Li and G. K. Ananthasuresh: J. Micromech. Microeng. 11 (2001) 38   DOI   ScienceOn
16 H. Yang, C.-T. Pan and M.-C. Chou: J. Micromech. Microeng. 11 (2001) 94   DOI   ScienceOn
17 S. F. Pond, Micro actuator Technology and Product Development Strategies, Carlsbad: Torrey Pines Research, (2000) 115
18 S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivorarov and F. Dausinger: Appl. Phys. A, 69[suppl.] (1999) S633   DOI
19 S. A. McAuley, H. Ashraf, L. Atabo, A. Chambers, S. Hall, J. Hopkins and G. Nicholls: J. Phys. D: Apl. Phys. 34 (2001) 2769   DOI   ScienceOn
20 A. Asai: J. of Heat Transfer, 113 (1991) 973   DOI