• Title/Summary/Keyword: sequence algebra

Search Result 69, Processing Time 0.029 seconds

Piaget's Mechanism of the Development of Concepts and the History of Algebra (Piaget의 개념 발달의 메커니즘과 대수의 역사)

  • 민세영
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.485-494
    • /
    • 1998
  • This study is on the theory of Piaget's reflective abstraction and the mechanism of the development of knowledge and the history of algebra and its application to understand the difficulties that many students have in learning algebra. Piaget considers the development of knowledge as a linear process. The stages in the construction of different forms of knowledge are sequential and each stage begins with reorganization. The reorganization consists of the projection onto a higher level from the lower level and the reflection which reconstructs and reorganizes within a lager system that is transferred by profection. Piaget shows that the mechanisms mediating transitions from one historical period to the next are analogous to those mediating the transition from one psychogenetic stage to the next and characterizes the mechanism as the intra, inter, trans sequence. The historical development of algebra is characterized by three periods, which are intra inter, transoperational. The analysis of the history of algebra by the mechanism explains why the difficulties that students have in learning algebra occur and shows that the roles of teachers are important to help students to overcome the difficulties.

  • PDF

A Process Algebra Approach for Object Interactions in UML (UML에서 객체 상호작용에 대한 프로세스 대수 접근)

  • 최성운;이영환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.202-211
    • /
    • 2003
  • Abstract Formal definitions of syntax and semantics for the static and dynamic models in Object Oriented methods are already defined. But the behavior of interacting objects is not formalized. In this paper, we defined the common behavior of interacting objects in terms of process algebra using sequence diagram in UML and regularized properties of interacting objects. Based on the results, we can develop a formal specification by. using of the object interaction instead of the existence dependency suggested by M. Snoeck and G. Dedene[9].

ON $p_n$-SEQUENCES OF UNIVERSAL ALGEBRAS

  • Cho, Jung-Rae
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.153-163
    • /
    • 1999
  • We study how the $p_n$-sequence of a universal algebra determine the structure of the algebra. Regarding term equivalent algebras as the same algebras, we consider the problem when the algebras are groupoids.

  • PDF

WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.507-514
    • /
    • 2018
  • Let $\{{\varphi}_n\}_{n{\geq}1}$ be a sequence of analytic self-maps of ${\mathbb{D}}$. It is proved that if the union set of the ranges of the composition operators $C_{{\varphi}_n}$ on the weighted Bergman spaces contains the disk algebra, then ${\varphi}_k$ is an automorphism of ${\mathbb{D}}$ for some $k{\geq}1$.

ON THE SPECTRAL RADIUS AND INVERTIBILITY OF CERTAIN ELEMENTS IN BANACH ALGEBRA

  • Park, Kyon-Hong;Kim, Byung-Do
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.299-308
    • /
    • 1997
  • In this paper we show that the limit of a convergent in-vertible sequence in the set of invertible elements Inv(A) in a Banach algebra A under a certain conditions is invertible and we investigate some properties of the spectral radius of banach algebra with unit.

SELF-ADJOINT INTERPOLATION ON Ax = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • PARK, DONGWAN;PARK, JAE HYUN
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.135-140
    • /
    • 2006
  • Given vectors x and y in a separable Hilbert space H, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate self-adjoint interpolation problems for vectors in a tridiagonal algebra: Let AlgL be a tridiagonal algebra on a separable complex Hilbert space H and let $x=(x_i)$ and $y=(y_i)$ be vectors in H.Then the following are equivalent: (1) There exists a self-adjoint operator $A=(a_ij)$ in AlgL such that Ax = y. (2) There is a bounded real sequence {$a_n$} such that $y_i=a_ix_i$ for $i{\in}N$.

  • PDF

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

THE KÜNNETH SPECTRAL SEQUENCE FOR COMPLEXES OF BANACH SPACES

  • Park, HeeSook
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.809-832
    • /
    • 2018
  • In this paper, we form the basis of the abstract theory for constructing the $K{\ddot{u}}nneth$ spectral sequence for a complex of Banach spaces. As the category of Banach spaces is not abelian, several difficulties occur and hinder us from applying the usual method of homological algebra directly. The most notable facts are the image of a morphism of Banach spaces is not necessarily a Banach space, and also the closed summand of a Banach space need not be a topological direct summand. So, we consider some conditions and categorical terms that fit the category of Banach spaces to modify the familiar method of homological algebra.

On Paranormed Type Fuzzy Real Valued Class of Sequences 2F(p)

  • Sen, Mausumi;Roy, Santanu
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.345-352
    • /
    • 2011
  • In this article we introduce the fuzzy real valued double sequence spaces $_2{\ell}^F$ (p) where p = ($p_{nk}$) is a double sequence of bounded strictly positive numbers. We study their different properties like completeness, solidness, symmetricity, convergence free etc. We prove some inclusion results also.