East Asian Math J 15(1999), No. 2, pp 153-163

ON p_n -SEQUENCES OF UNIVERSAL ALGEBRAS

JUNG.RAE CHO

ABSTRACT We study how the p_n -sequence of a universal algebra determine the structure of the algebra Regarding term equivalent algebras as the same algebras, we consider the problem when the algebras are groupoids.

1. Introduction

A term $f(x_1, x_2, \ldots, x_n)$ over an abstract algebra $\mathcal{A} = (\mathcal{A}, \Omega)$ is called *n*-ary if it involves *n* distinct variables and *essential* if it depends on each variable it involves in the sense that, for each $i = 1, 2, \ldots, n$, there are $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ and b, c in \mathcal{A} such that

 $f(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n) \neq f(a_1, \ldots, a_{i-1}, c, a_{i+1}, \ldots, a_n).$

We denote by $p_n(\mathcal{A})$ the number of essentially *n*-ary term functions over \mathcal{A} , and the sequence $(p_0(\mathcal{A}), p_1(\mathcal{A}), p_2(\mathcal{A}), ...)$ is called the p_n sequence of \mathcal{A}

A groupoid is called *trivial* if it has only one element and *proper* if the term xy is essentially binary.

Two algebras (A, Ω_1) and (A, Ω_2) on the same underlying set A are said to be *term equivalent* if they have the same term functions, that is, any Ω_1 -term can be written as an Ω_2 -term and vice versa.

Received February 10, 1999 Revised May 12, 1999

¹⁹⁹¹ Mathematics Subject Classification 08A40, 20N02

Key words and phrases p_n -sequences, clone, essentially n-ary

The present research was supported by Pusan National University Research Grant, 1995

For simplicity of our notation, we inductively define groupoid terms by $xy^1 = xy$ and $xy^{k+1} = (xy^k)y$, and use the expression $x_1x_2 \cdots x_{n-1}x_n$ for $((\cdots (x_1x_2) \cdots)x_{n-1})x_n$

A groupoid (G, \cdot) is said to be *medial* if it satisfies the identity (xy)(uv) = (xu)(yv), and *distributive* if it satisfies the x(yz) = (xy)(xz) and (xy)z = (xz)(yz). A commutative idempotent groupoid is called a *semilattice* if it is a semigroup, a *near-semilattice* if it satisfies $xy^2 = xy$, and a *Steiner quasigroup* if it satisfies $xy^2 = x$.

An affine space over a field K is algebraically defined to be the full idempotent reduct of a vector space over K ([2,13,15,17]). However, when the base field is the Galois field GF(3) with three element, any affine space over GF(3) is term equivalent to a medial Steiner quasigroup ([12]). Thus we will treat an affine space over GF(3) as a medial Steiner quasigroup in this paper.

We say a sequence $\mathbf{a} = (a_0, a_1, a_2, \dots)$ (finite or infinite) of cardinals is called *representable* if there is an algebra A such that $\mathbf{p}(A) = \mathbf{a}$, that is, $p_n(A) = a_n$ for all n, and call \mathbf{a} the p_n -sequence of A in this case. If, furthermore, A is from a given class K of algebra, we say that \mathbf{a} is *representable in* K or A *represents* \mathbf{a} in K.

A clone on a set A is a collection of operations on A which is closed under compositions and contains all projections. A clone C is called minimal if the lattice of subclones of C has only two elements. This means that $Card(A) \neq 1$ and any term in C together with projections generates C

For further concepts and notations not defined in this paper, we refer the readers to [10] and [11].

A term $f(x_1, x_2, \ldots, x_n)$ over a groupoid (G, \cdot) will be called *linear* term if each variable appears at most once in the expression.

2. Theorems and proofs

THEOREM 1. Let (G, \cdot) be a nontrivial Steiner quasigroup. Then the following conditions are equivalent:

- (1) (G, \cdot) is an affine space over GF(3);
- (2) (G, \cdot) is medial;

- (3) The clone of (G, \cdot) is minimal;
- (4) The term $f(x_1, x_2, x_3, x_4, x_5) = ((x_1x_2)(x_3x_4))x_5$ is symmetric;
- (5) For a certain $n \ge 4$, an n-ary term admits a nontrivial permutation.

PROOF. The fact that the condition (i) implies any of the remaining one is not hard to check except the implication (i) \Rightarrow (iii), which can be deduced from [14]. The implication (ii) \Rightarrow (i) is contained in [12]. Using [8, Lemma 3.2], one can easily prove (iii) \Rightarrow (i). Now we prove (iv) \Rightarrow (i) If $f(x_1, \dots, x_5)$ is symmetric, then we obtain that

$$\begin{aligned} (x_1x_2)(x_3x_4) &= ((x_1x_2)(x_3x_4))((x_1x_2)(x_3x_4))) \\ &= ((x_1x_3)(x_2x_4))((x_1x_2)(x_3x_4))) \\ &= ((x_1x_2)(x_3x_4))((x_1x_3)(x_2x_4))) \\ &= ((x_1x_3)(x_2x_4))((x_1x_3)(x_2x_4))) \\ &= (x_1x_3)(x_2x_4). \end{aligned}$$

The implication $(v) \Rightarrow (i)$ follows from [4, Theorem 4].

Now we recall a theorem of Gatzer and Padmanabhan from [12].

PROPOSITION 2. If A is an algebra, then A is a nontrivial affine space over GF(3) if and only if $p_n(A) = \frac{2^n - (-1)^n}{3}$ for all n. Moreover, if A is a groupoid, then it suffices to assume $p_n(A) = \frac{2^n - (-1)^n}{3}$ only for n = 0, 1, 2, 3, 4.

With this theorem is connected

PROPOSITION 3. ([6, Theorem]) Let (G, \cdot) be an idempotent groupoid. Then (G, \cdot) is a nontrivial affine space over GF(3) if and only if $p_4(G, \cdot) = 5$.

Note that there exist idempotent groupoids (G, \cdot) satisfying $p_n(A) = \frac{2^n - (-1)^n}{3}$ for all $n \leq 3$ which are not affine spaces over GF(3) ([16]) This means that $p_4(G, \cdot) = 5$ is the first number of the p_n -sequence which uniquely determines the structure of an idempotent groupoid, and such groupoids are affine spaces over GF(3) (see Theorem 9)

THEOREM 4. Let (G, \cdot) be a commutative idempotent groupoid. Then (G, \cdot) is a nontrivial affine space over GF(3) if and only if $p_n(G, \cdot) = \frac{2^n - (-1)^n}{3}$ for some $n \ge 4$.

PROOF. If (G, \cdot) is a nontrivial affine space over GF(3), i.e., $(G, \cdot) = (G, 2x + 2y)$, where (G, +) is an abelian group of exponent 3, then $p_n(G, \cdot) = \frac{2^n - (-1)^n}{3}$ for all n by [2]. Let now $p_n(G, \cdot) = \frac{2^n - (-1)^n}{3}$ for some $n \ge 4$. Then (G, \cdot) is not a semilattice since $p_n(G, \cdot) = 1$ for all n if (G, \cdot) is a semilattice. If (G, \cdot) is also not an affine space over GF(3), then by [7,Theorem 1] we obtain that $p_n(G, \cdot) \ge 3^{n-1}$ for all $n \ge 4$. Hence, $\frac{2^n - (-1)^n}{3} \ge 3^n$ for all $n \ge 4$, which is not true. Thus (G, \cdot) is an affine space over GF(3).

In this connection we conjecture that if (G, \cdot) is an idempotent groupoid (not necessarily commutative), then (G, \cdot) is a nontrivial affine space over GF(3) if and only if $p_n(G, \cdot) = \frac{2^n - (-1)^n}{3}$ for some $n \ge 4$ (compare with Theorem 6).

THEOREM 5. Let (G, \cdot) be a commutative idempotent groupoid. Then (G, \cdot) is a nontrivial affine space over GF(3) if and only if $p_3(G, \cdot) = 3$ and the clone of (G, \cdot) is minimal.

PROOF. If (G, \cdot) is a nontrivial affine space over GF(3), then trivially $p_3(G, \cdot) = 3$ and the clone of (G, \cdot) is minimal by [14] Assume that $p_3(G, \cdot) = 3$ and the clone of (G, \cdot) is minimal. By [9,Theorem 1.2], (G, \cdot) is a nontrivial distributive Steiner quasigroup. Then by Theorem 1 (G, \cdot) is an affine space over GF(3).

Note that in this theorem the assumption that (G, \cdot) is commutative is essentially needed. Indeed, if (G, +) is an abelian group of exponent 4, then we have $p_3(G, \cdot) = 3$ for the groupoid $(G, \cdot) = (G, 2x + 3y)$. Obviously (G, \cdot) is a noncommutative idempotent groupoid and is not an affine space over GF(3).

THEOREM 6. Let (G, \cdot) be an idempotent groupoid with $p_2(G, \cdot) = 1$ Then the following conditions are equivalent:

(1) (G, \cdot) is an affine space over GF(3);

(2) p_n(G, ·) = ^{2ⁿ-(-1)ⁿ}/₃ for some n ≥ 4;
(3) (G, ·) is medial and satisfies a nonregular identity;
(4) p₃(G, ·) = 3 and the clone of (G, ·) is minimal

PROOF. Since $p_2(G, \cdot) = 1$, we infer that (G, \cdot) is commutative and hence the equivalence (i) \Leftrightarrow (ii) follows from Theorem 4. According to [5,], the groupoid (G, \cdot) is either a nontrivial Steiner quasigroup or a nontrivial near-semilattice. The implication (i) \Rightarrow (iii) is obvious since any affine space over GF(3) is a medial Steiner quasigroup and hence (G, \cdot) satisfies a nonregular identity, namely $xy^2 = x$. The implication (iii) \Rightarrow (i) follows from [4] and Theorem 1 The equivalence (i) \Leftrightarrow (iv) is contained in Theorem 5.

Recall that a groupoid (G, \cdot) is called *totally commutative* if every essentially binary term is commutative. Further,

PROPOSITION 7 ([1]) Let (G, \cdot) be an proper medial idempotent groupoid. Then the following conditions are equivalent:

- (1) (G, \cdot) is an totally commutative;
- (2) (G, \cdot) is either a semilattice or an affine space over GF(3);
- (3) $p_2(G, \cdot) = 1.$

THEOREM 8 Let (G, \cdot) be a proper idempotent groupoid. Then (G, \cdot) is a nonmedial distributive Steiner quasigroup if and only if $p_2(G, \cdot) = 1$, $p_3(G, \cdot) = 3$ and $p_n(G, \cdot) > 3^{n-1}$ for all $n \ge 4$.

PROOF. If (G, \cdot) is nonmedial distributive Steiner quasigroup, then by Theorem 1 we infer that (G, \cdot) is not an affine space over GF(3). Obviously $p_2(G, \cdot) = 1$ and $p_3(G, \cdot) = 3$ for such groupoids. Using [7,Theorem 5 1], we get that $p_n(G, \cdot) > 3^{n-1}$ for all $n \ge 4$ Let now $p_2(G, \cdot) = 1$ and $p_3(G, \cdot) = 3$. Thus (G, \cdot) is a commutative idempotent groupoid. According to [9,Theorem 1.2], the groupoid (G, \cdot) is a distributive Steiner quasigroup. Since $p_n(G, \cdot) > 3^{n-1}$, we infer that (G, \cdot) is nonmedial. Indeed, if (G, \cdot) is medial, then the (G, \cdot) is an affine space over GF(3) by Theorem 1 and we will have $\frac{2^n - (-1)^n}{3} = p_n(G, \cdot) > 3^{n-1}$ for all $n \ge 4$, which is impossible. This completes the proof.

The code of an algebra \mathcal{A} is a finite sequence $\mathbf{q} = (p_0(\mathcal{A}), \ldots, p_m(\mathcal{A}))$ such that the p_n -sequence $\mathbf{p} = (p_0(\mathcal{A}), p_1(\mathcal{A}), p_2(\mathcal{A}), \dots)$ is the unique extension of q and m is the smallest number with this property.

THEOREM 9. Let (G, \cdot) be an nontrivial groupoid. Then the following conditions are equivalent:

- (1) (G, \cdot) is a nontrivial affine space over GF(3); (2) (G, \cdot) represents the sequence $\mathbf{a} = (0, 1, 1, 3, \dots, \frac{2^n (-1)^n}{3}, \dots)$;
- (3) The sequence (0, 1, 1, 3, 5) is the code of (G, \cdot) in the class of all groupoids.

PROOF. The equivalence (1) \Leftrightarrow (11) is by Theorem 2. The implication (iii) \Rightarrow (i) follows from the definition of the code and Theorem 2. We prove here the implication (i) \Rightarrow (iii). Since semilattices also represent (0, 1, 1), this sequence does not determine affine spaces over GF(3). Thus (0, 1, 1) is not the code of an affine space. If (G, \cdot) represents (0,1,1,3), then (G,\cdot) is a commutative idempotent groupoid and by [9, Theorem 1.2] we infer that (G, \cdot) is a nontrivial distributive Steiner quasigroup. Since there exist nonmedial distributive Steiner quasigroups ([16]), obviously representing (0, 1, 1, 3), we deduce by applying the preceding theorem that for such groupoids we have $p_n(G, \cdot) > 3^{n-1}$ for all $n \ge 4$. Thus these groupoids are not affine spaces over GF(3)(see Theorem 2). Thus (0, 1, 1, 3) is not the code of affine spaces over GF(3). If (G, \cdot) represents (0, 1, 1, 3, 5), then (G, \cdot) is a nontrivial affine space over GF(3) by Theorem 4. Thus, (0, 1, 1, 3, 5) is the code of affine spaces in the class of all groupoids.

Recall that an algebra A of a finite type is called *equationally com*plete if the variety generated by A is equationally complete.

THEOREM 10 Let (G, \cdot) be an idempotent groupoid with $p_2(G, \cdot) =$ 1. Then (G, \cdot) is equationally complete if and only if (G, \cdot) is either a nontrivial affine space over GF(3) or a nontrivial semilattice.

PROOF. By [5, Lemma 1] we infer that (G, \cdot) is either a nontrival Steiner quasigroup or a nontrivial near-semilattice. First observe that any nontrivial affine space over GF(p) is equationally complete

([14]). Further, let (G, \cdot) be a nontrivial Steiner quasigroup then it is obvious that the subgroupoid G(a, b) generated by two distinct elements a, b in G is isomorphic to three-element affine space over GF(3), namely it is isomorphic to the groupoid $G(3) = (\{0, 1, 2\}, 2x+2y)$ where $(\{0, 1, 2\}, +)$ is a group of order 3. Clearly, the variety V_1 generated by G(3) is contained in the variety V_2 generated by (G, \cdot) . Since the variety generated by GF(3) is equationally complete, this is precisely the variety of all affine space over GF(3) and we get that $V_1 = V_2$ provided V_2 is equationally complete Analogously, any nontrivial near-semilattice (G, \cdot) contains a two-element semilattice and therefore if (G, \cdot) is equationally complete then (G, \cdot) must be a semilattice, completing the proof of the theorem.

In [3], we find the following.

PROPOSITION 11. Let (G, f) be a nontrivial symmetric algebra of type (4) satisfying the identity f(x, y, y, y) = x. Then (G, f) is a non-trivial affine space over GF(3) if and only if $p_4(G, f) = 5$.

Combining some earlier results we have the following.

THEOREM 12. Let (G, \cdot) be an idempotent groupoid with $p_2(G, \cdot) = 1$. Then the following conditions are equivalent

- (1) (G.) is a nontrivial affine space over GF(3);
- (2) $p_4(G, \cdot) = 5$ (without the assumption $p_2(G, \cdot) = 1$;
- (3) $p_3(G, \cdot) = 3$ and the clone of (G, \cdot) is minimal;
- (4) (G, \cdot) is equationally complete and $p_n(G, \cdot) > 1$ for some $n \ge 3$;
- (5) (G, \cdot) is equationally complete and (G, \cdot) satisfies a nonregular identity;
- (6) (G, \cdot) satisfies a nontrivial strongly regular identity and a non-regular identity.

PROOF. The equivalence (i) \Leftrightarrow (ii) is contained in Proposition 3. The equivalence (i) \Leftrightarrow (iii) follows from Theorem 5 The equivalence (i) \Leftrightarrow (iv) can be deduced from Theorem 10. Using the same argument as in the proof of Theorem 10, one can obtain the equivalence (iv) \Leftrightarrow (v). We prove the equivalence (i) \Leftrightarrow (vi). It is clear that any nontrivial affine space over GF(3) satisfies a strongly regular identity, e.g., the

medial law, and it also satisfies a nonregular identity, e.g., $xy^2 = x$. The converse follows from [4], [7] and Theorem 1.

THEOREM 13. If an idempotent algebra (A, Ω) with $p_2(A, \Omega) \geq 2$ contains a Steiner quasigroup as a reduct, then $p_2(A, \Omega) \geq 5$

PROOF. Suppose (A, +) is such a reduct of (A, Ω) . Since $p_2(A, \Omega) \ge$ 2, we infer that (A, Ω) contains another essentially binary term, say $x \cdot y$. If $x \cdot y$ is commutative, then we prove that the terms x + y, xy, (x + y) + xy, xy + y and yx + x are pairwise distinct essentially binary terms. Indeed, if for example xy + y = y, then we have y = yy + y = (xy + y) + y = xy, a contradiction. If xy + y = x then we also have the contradiction that xy = x + y. If xy + y = yx + xthen we obtain the contradiction x = y, and so on. Thus we have that $p_2(A, \Omega) \ge (A, +, \cdot) \ge 5$. Assume that $x \cdot y$ is noncommutative. Then we consider the terms x + y, xy, yx, xy + y and yx + x. By the same argument as above, we see that xy + y is essentially binary and $xy + y \neq xy$. If xy + y = yx, then xy + yx = y, which is a contradiction. Obviously $x + y \neq xy + y$. Assume xy + x = yx + x. Then we consider the following essentially binary terms x + y, xy, yx, xy+y and (x+y)+(xy+y), and we see that they are pairwise distinct. Thus $p_2(A, \Omega) \ge (A, +, \cdot) \ge 5$ in this case as well, which completes the proof.

3. Appendix

We summarize here all known characterizations of affine space over GF(3) in a list.

For a groupoid (G, \cdot) the following conditions are equivalent:

- (1) (G, \cdot) is an affine space over GF(3),
- (2) (G, \cdot) represent the sequence $(0, 1, 1, 3, \dots, \frac{2^n (-1)^n}{3}, \dots),$
- (3) The sequence (0, 1, 1, 3, 5) is the code of (G, \cdot) in the class of all groupoids,
- (4) (G, \cdot) is idempotent and $p_4(G, \cdot) = 5$,
- (5) (G, \cdot) is commutative, idempotent and $p_n(G, \cdot) = \frac{2^n (-1)^n}{3}$ for some $n \ge 4$,

- (6) (G, \cdot) is a nontrivial medial Steiner quasigroup;
- (7) (G, \cdot) is a Steiner quasigroup whose clone is minimal;
- (8) (G, \cdot) is a nontrivial Steiner quasigroup in which $((x_1x_2)(x_3x_4))x_5$ is symmetric;
- (9) (G, \cdot) is a nontrivial Steiner quasigroup satisfying a nontrivial linear identity;
- (10) (G, \cdot) is commutative, $p_3(G, \cdot) = 3$ and the clone of (G, \cdot) is minimal;
- (11) $p_2(G, \cdot) = 1$ and (G, \cdot) is medial satisfying a nonregular identity;
- (12) $p_2(G, \cdot) = 1$ and (G, \cdot) is satisfies both a nonregular identity and a nontrivial strongly regular identity,
- (13) $p_2(G, \cdot) = 1$, $p_n(G, \cdot) > 1$ for some n > 1 and the clone of (G, \cdot) is minimal,
- (14) p₂(G, ·) = 1, (G, ·) satisfies a nonregular identity and the clone of (G, ·) is minimal;
- (15) $p_2(G, \cdot) = 1$, (G, \cdot) is equationally complete and $p_n(G, \cdot) > 1$ for some $n \ge 3$,
- (16) $p_2(G, \cdot) = 1$, (G, \cdot) is equationally complete and (G, \cdot) satisfies a nonregular identity;
- (17) $p_2(G, \cdot) = 1$, (G, \cdot) is medial, idempotent, but not a semilattice;
- (18) $p_3(G, \cdot) = 3$, (G, \cdot) is commutative, idempotent and equationally complete;
- (19) (G, \cdot) is medial idempotent totally commutative groupoid which is not a semilattice;
- (20) $p_3(G, \cdot) < 7$, (G, \cdot) is not a semilattice and the clone of (G, \cdot) is minimal,
- (21) (G, \cdot) is a commutative idempotent groupoid which is not a semilattice and every term over (G, \cdot) is equal to a linear term.
- (22) (G, \cdot) is idempotent and equationally complete with $p_3(G, \cdot) \leq 6$;
- (23) (G, \cdot) is a nontrivial Steiner quasigroup and $p_4(G, \cdot) \leq 35$,
- (24) (G,) is a nontrivial Steiner quasigroup with $p_n(G, \cdot) < \frac{7}{8}n!$ for some $n \ge 5$;
- (25) (G, f) is a symmetric algebra of type (4) satisfying f(x, y, y, y) = x and $p_4(G, f) \ge 5$.

In this connection, we raise the following problems.

PROBLEM 1. Let (G, \cdot) be an idempotent groupoid. Is it true that (G, \cdot) is an affine space over GF(3) if and only if $p_n(G, \cdot) = \frac{2^n - (-1)^n}{3}$ for some $n \ge 4$.

PROBLEM 2. Let (G, \cdot) be an idempotent groupoid which is equationally complete. Examine p_n -sequences of such groupoids. Note that there exists no equationally complete idempotent groupoid with $p_3(G, \cdot) = 6$.

References

- [1] J. R. Cho and S. H. Kim, Totally commutative idempotent groupoids, preprint..
- B. Csákány, On affine spaces over prime fields, Acta Sci Math. 37 (1975), 33-36.
- [3] J. Dudek, An affine space over GF(3) as a 4-groupoid, Proc Symposium on n-ary structures, Skopje, 1982, pp 243-249
- [4] J. Dudek, Varieties of idempotent commutative groupoids, Fund Math 120 (1984), 193-204
- [5] J Dudek, On the minimal extension of sequences, Algebra Universalis 23 (1986), 308-312.
- [6] J. Dudek, A polynomial characterization of affine spaces over GF(3), Colloq Math. 50 (1986), 161-171
- J Dudek, Polynomials in idempotent commutative groupoids, Dissertationes Math. 286 (1989), 1-55
- [8] J Dudek, The unique minimal clone with three essentially binary operations, Algebra Universalis 27 (1990), 201-209
- J. Dudek, A characterization of distributive Steiner quasigroups and semilattices, Discuss Math., Algebra and Stochastic Methods 15 (1995), 101-119
- [10] G Gratzer, Universal Algebra, 2nd ed., Springer-Verlag, New York-Heidelberg-Berlin, 1979
- [11] G Grätzer and A Kisielewicz, A survey of some open problems on p_n-sequences and free spectra of algebras and varieties, Universal Algebra and Quasigroup Theory, A Romanowska and J D H Smith (eds) (1992), Helderman Verlag, Berlin, 57-88
- [12] G Gratzer and R. Padmanabhan, On commutative, idempotent and nonassociative groupoids, Proc. Amer. Math. Soc. 28 (1971), 75-78
- [13] F. Ostermann and J. Schmidt, Der baryzentrische Kalkul als axiomtische Grundlage der affinen Geometire, J. reine angew. Math. 224 (1966), 44-57
- [14] J Płonka, R-prime idempotent reduct of abelian groups, Archiv der Math 24 (1973), 129-132
- [15] A Romanowska and J D H Smith, Modal Theory, an algebraic approach to order. geometry and convexity, Helderman Verlag, Berlin, 1985.

- [16] J Soubhn, Etude algebrique de la notion de moyenne, J Math. Pures et App 50 (1971), 53-264
- [17] Á Szendrei, Clones in universal algebra, (Université de Montréal, Montréal, 1986)

Department of Mathematics Pusan National University Pusan 609-735, Korea *E-mail*: jungcho@hyowon.pusan.ac.kr