ON p_{n}-SEQUENCES OF UNIVERSAL ALGEBRAS

Jung.Rae Cho

Abstract

We study how the p_{n}-sequence of a unversal algebra determine the structure of the algebra Regarding term equivalent algebras as the same algebras, we consider the problem when the algebras are groupoids.

1. Introduction

A term $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over an abstract algebra $\mathcal{A}=(A, \Omega)$ is called n-ary if it involves n distinct variables and essentzal if it depends on each variable it involves in the sense that, for each $i=1,2 \ldots, n$, there are $a_{1}, ., a_{2-1}, a_{i+1}, \ldots, a_{n}$ and b, c in A such that

$$
f\left(a_{1}, \ldots, a_{2-1}, b, a_{2+1}, \ldots, a_{n}\right) \neq f\left(a_{1}, \ldots, a_{\imath-1}, c, a_{\imath+1}, \ldots, a_{n}\right) .
$$

We denote by $p_{n}(\mathcal{A})$ the number of essentially n-ary term functions over \mathcal{A}, and the sequence $\left(p_{0}(\mathcal{A}), p_{1}(\mathcal{A}), p_{2}(\mathcal{A}), \ldots\right)$ is called the p_{n} sequence of \mathcal{A}

A groupoid is called trumal if it has only one element and proper if the term $x y$ is essentially binary.

Two algebras $\left(A, \Omega_{1}\right)$ and $\left(A, \Omega_{2}\right)$ on the same underlying set A are said to be term equivalent if they have the same term functions, that is, any Ω_{1}-term can be written as an Ω_{2}-term and vice versa.

Recerved February 10, 1999 Revised May 12, 1999
1991 Mathematics Subject Classification 08A40, 20N02
Key words and phrases p_{n}-sequences, clone, essentially n-ary
The present reseaich was supported by Pusan National University Research Grant, 1995

For simplicity of our notation, we inductively define groupoid terms by $x y^{1}=x y$ and $x y^{k+1}=\left(x y^{k}\right) y$, and use the expression $x_{1} x_{2} \cdots x_{n-1} x_{n}$ for $\left(\left(\cdots\left(x_{1} x_{2}\right) \cdots\right) x_{n-1}\right) x_{n}$

A groupoid ($G, \cdot)$ is said to be medzal if it satisfies the identity $(x y)(u v)=(x u)(y v)$, and destributive if it satisfies the $x(y z)=(x y)(x z)$ and $(x y) z=(x z)(y z)$. A commutative idempotent groupoid is called a semulattice if it is a semigroup, a near-semelattice if it satisfies $x y^{2}=x y$, and a Stemer quasigroup if it satisfies $x y^{2}=x$.

An affine space over a field K is algebracally defined to be the full idempotent reduct of a vector space over $K([2,13,15,17])$. However, when the base field is the Galois field $G F(3)$ with three element, any affine space over $G F(3)$ is term equivalent to a medial Steiner quasigroup ([12]). Thus we will treat an affine space over $G F(3)$ as a medral Steiner quasigroup in this paper.

We say a sequence $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ (finite or infinitc) of cardinals is called representable if there is an algebra A such that $\mathrm{p}(A)=\mathbf{a}$, that is, $p_{n}(A)=a_{n}$ for all n, and call a the p_{n}-sequence of A in this case. If, furthermore, A is from a given class K of algebra, we say that \mathbf{a} is representable in K or A represents \mathbf{a} in K.

A clone on a set A is a collection of operations on A which is closed under compositions and contains all projections. A clone C is called minimal if the lattice of subclones of C has only two elements. This means that $\operatorname{Card}(A) \neq 1$ and any term in C together with projections generates C

For further concepts and notations not defined in this paper, we refer the readers to [10] and [11].

A term $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over a groupoid (G, \cdot) will be called linear term if each variable appears at most once in the expression.

2. Theorems and proofs

Tieorem 1. Let (G, \cdot) be a nontrivzal Stener quasigroup. Then the following conditions are equivalent:
(1) (G, \cdot) is an affine space over $G F(3)$;
(2) (G, \cdot) is medial;
(3) The clone of (G, \cdot) is minvmal;
(4) The term $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\right) x_{5}$ is symmetruc;
(5) For a certain $n \geq 4$, an n-ary term admats a nontrivial permutation.

Proof. The fact that the condition (i) implies any of the remanning one is not hard to check except the implication (i) \Rightarrow (iii), which can be deduced from [14]. The implication (ii) \Rightarrow (1) is contained in [12]. Using $[8$, Lemma 3.2], one can easily prove (iii) \Rightarrow (in). Now we prove (iv) \Rightarrow (1) If $f\left(x_{1}, \cdots, x_{5}\right)$ is symmetric, then we obtain that

$$
\begin{aligned}
\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right) & =\left(\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\right)\left(\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\right) \\
& =\left(\left(x_{1} x_{3}\right)\left(x_{2} x_{4}\right)\right)\left(\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\right) \\
& =\left(\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\right)\left(\left(x_{1} x_{3}\right)\left(x_{2} x_{4}\right)\right) \\
& =\left(\left(x_{1} x_{3}\right)\left(x_{2} x_{4}\right)\right)\left(\left(x_{1} x_{3}\right)\left(x_{2} x_{4}\right)\right) \\
& =\left(x_{1} x_{3}\right)\left(x_{2} x_{4}\right) .
\end{aligned}
$$

The implication (v) \Rightarrow (ii) follows from $[4$, Theorem 4].
Now we recall a theorem of Gatzer and Padmanabhan from [12].
Proposition 2. If A is an algebra, then A is a nontrival affine space over $G F(3)$ if and only if $p_{n}(A)=\frac{2^{n}-(-1)^{\prime 2}}{3}$ for all n. Moreover, if A is a groupord, then it suffices to assume $p_{n}(A)=\frac{2^{n}-(-1)^{n}}{3}$ only for $n=0,1,2,3,4$.

With this theorem is connected
Proposition 3. ($[6$, Theorem $]$) Let (G, \cdot) be an dempotent groupoid. Then (G, \cdot) is a nontriveal affine space over $G F(3)$ if and only if $p_{4}(G, \cdot)=5$.

Note that there exist idempotent groupoids (G, \cdot) satisfying $p_{n}(A)=$ $\frac{2^{n}-(-1)^{n}}{3}$ for all $n \leq 3$ which are not affine spaces over $G F(3)$ ([16]) This means that $p_{4}(G, \cdot)=5$ is the first number of the p_{n}-sequence which uniquely determmes the structure of an idempotent groupoid, and such groupoids are affine spaces over $G F(3)$ (see Theorem 9)

Theorem 4. Let (G, \cdot) be a commutative adempotent groupoid. Then (G, \cdot) is a nontrwal affine space over $G F(3)$ if and only of $p_{n}(G, \cdot)=$ $\frac{2^{n}-(-1)^{n}}{3}$ for some $n \geq 4$.

Proof. If (G, \cdot) is a nontrivial affine space over $G F(3)$, i.e., $(G, \cdot)=$ $(G, 2 x+2 y)$, where $(G,+)$ is an abelian group of exponent 3 , then $p_{n}(G, \cdot)=\frac{2^{n}-(-1)^{n}}{3}$ for all n by [2]. Let now $p_{n}(G, \cdot)=\frac{2^{n}-(-1)^{n}}{3}$ for some $n \geq 4$. Then (G, \cdot) is not a semilattice since $p_{n}(G, \cdot)=1$ for all n if (G, \cdot) is a semilattice. If (G, \cdot) is also not an affine space over $G F(3)$, then by $\left[7\right.$, Theorem 1] we obtain that $p_{n}(G, \cdot) \geq 3^{n-1}$ for all $n \geq 4$. Hence, $\frac{2^{n}-(-1)^{n}}{3} \geq 3^{n}$ for all $n \geq 4$, which is not true. Thus (G, \cdot) is an affine space over $G F(3)$.

In this connection we conjecture that if (G, \cdot) is an idempotent groupoid (not necessarily commutative), then (G, \cdot) is a nontrivial affine space over $G F(3)$ if and only if $p_{n}(G, \cdot)=\frac{2^{n}-(-1)^{n}}{3}$ for some $n \geq 4$ (compare with Theorem 6).

Theorem 5. Let (G, \cdot) be a commutatuve adempotent groupoid. Then (G, \cdot) is a nontrivial affine space over $G F(3)$ of and only if $p_{3}(G, \cdot)=3$ and the clone of (G, \cdot) is minimal.

Proof. If (G, \cdot) is a nontrivial affine space over $G F(3)$, then triv1ally $p_{3}(G, \cdot)=3$ and the clone of (G, \cdot) is minimal by [14] Assume that $p_{3}(G, \cdot)=3$ and the clone of $(G$,$) is minimal. By [9$, Theorem 1.2], (G, \cdot) is a nontrivial distributıve Stemer quasigroup. Then by Theorem $1(G$,$) is an affine space over G F(3)$.

Note that in this theorem the assumption that (G, \cdot) is commutative is essentially noeded. Indeed, if $(G,+)$ is an abelian group of exponent 4, then we have $p_{3}(G, \cdot)=3$ for the groupord $(G, \cdot)=(G, 2 x+3 y)$. Obviously (G, \cdot) is a noncommutative idempotent groupoid and is not an affine space over $G F(3)$.

Theorem 6. Let (G, \cdot) be an adempotent groupozd wath $p_{2}(G, \cdot)=1$ Then the following conditions are equivalent:
(1) (G, \cdot) is an affine space over $G F(3)$;
(2) $p_{n}(G, \cdot)=\frac{2^{n}-(-1)^{n}}{3}$ for some $n \geq 4$;
(3) (G, \cdot) is medual and satusfies a nonregular identrty;
(4) $p_{3}(G \cdot \cdot)=3$ and the clone of $(G \cdot \cdot)$ is minimal

Proof. Since $p_{2}(G, \cdot)=1$, we infer that (G, \cdot) is commutative and hence the equvalence (i) \Leftrightarrow (ii) follows from Theorem 4. According to $[5$,$] , the groupord (G, \cdot)$ is either a nontrivial Steiner quasigroup or a nontrivial near-semilattice. The implication (i) \Rightarrow (iii) is obvious since any affine space over $G F(3)$ is a medial Stemer quasigroup and hence (G, \cdot) satisfies a nonregular identity, namely $x y^{2}=x$. The implication (iii) \Rightarrow (i) follows from [4] and Theorem 1 The equivalence (i) \Leftrightarrow (iv) is contained in Theorem 5.

Recall that a groupoid (G, \cdot) is called totally commutative if every essentially binary term is commutative. Further,

Proposition 7 ([1]) Let (G, \cdot) be an proper medral 2dempotent groupoid. Then the following condutions are equivalent:
(1) (G, \cdot) is an totally commutative;
(2) (G, \cdot) is etther a semilattice or an affine space over $G F(3)$;
(3) $p_{2}(G, \cdot)=1$.

Theorem 8 Let (G, \cdot) be a proper idempotent groupord. Then (G, \cdot) is a nonmedial distributve Steiner quasigroup $f f$ and only of $p_{2}(G, \cdot)=1, p_{3}(G, \cdot)=3$ and $p_{n}(G, \cdot)>3^{n-1}$ for all $n \geq 4$.

Proof. If (G, \cdot) is nonmedial distributive Steiner quasigroup, then by Theorem 1 we infer that (G, \cdot) is not an affine space over $G F(3)$. Obviously $p_{2}(G, \cdot)=1$ and $p_{3}(G)=$,3 for such groupoids. Using [7,Theorem 51$]$, we get that $p_{n}(G, \cdot)>3^{n-1}$ for all $n \geq 4$ Let now $p_{2}(G, \cdot)=1$ and $p_{3}(G, \cdot)=3$. Thus $(G$,$) is a commutative idempotent$ groupoid. According to $[9$, Theorem 1.2], the groupold (G, \cdot) is a distributive Stener quasigroup. Since $p_{n}\left(G_{,} \cdot\right)>3^{n-1}$, we infer that (G, \cdot) is nonmedial. Indoed, if ($G, \cdot)$ is medial, then the ($G, \cdot)$ is an affine space over $G F(3)$ by Theorem 1 and we will have $\frac{2^{n}-(-1)^{n}}{3}=p_{n}(G, \cdot)>3^{n-1}$ for all $n \geq 4$, which is impossible. This completes the proof.

The code of an algebra \mathcal{A} is a finite sequence $\mathbf{q}=\left(p_{0}(\mathcal{A}), \ldots, p_{m}(\mathcal{A})\right)$ such that the p_{n}-sequence $\mathbf{p}=\left(p_{0}(\mathcal{A}), p_{1}(\mathcal{A}), p_{2}(\mathcal{A}), \ldots\right)$ is the unique extension of \mathbf{q} and m is the smallest number with thas property.

THEOREM 9. Let (G, \cdot) be an nontrival groupond. Then the followung condutions are equivalent:
(1) (G, \cdot) is a nontrivial affine space over $G F(3)$;
(2) (G, \cdot) represents the sequence $\mathbf{a}=\left(0,1,1,3, \ldots, \frac{2^{n}-(-1)^{n}}{3}, \ldots\right)$;
(3) The sequence $(0,1,1,3,5)$ is the code of (G, \cdot) in the class of all groupoids.

Proof. The equivalence (1) \Leftrightarrow (n) is by Theorem 2. The implication $(11 i) \Rightarrow$ (1) follows from the definition of the code and Theorem 2. We prove here the implication (1) \Rightarrow (iii). Sunce semilattices also represent $(0,1,1)$, this sequence does not determine affine spaces over $G F(3)$. Thus $(0,1,1)$ is not the code of an affine space. If (G, \cdot) represents $(0,1,1,3)$, then (G, \cdot) is a commutative idempotent groupoid and by [9,Theorem 12$]$ we infer that (G, \cdot) is a nontrivial distributive Steiner quasigroup. Since there exist nonmedial distributive Steiner quasigroups ([16]), obvously representing ($0,1,1,3$), we deduce by applying the preceding theorem that for such groupords we have $p_{n}(G, \cdot)>3^{n-1}$ for all $n \geq 4$. Thus these groupords are not affine spaces over $G F(3)$ (see Theorem 2). Thus $(0,1,1,3)$ is not the code of affine spaces over $G F(3)$. If ($G \cdot \cdot$) represents $(0,1,1,3,5)$, then (G, \cdot) is a nontrivial affine space over $G F(3)$ by Theorem 4. Thus, $(0,1,1,3,5)$ is the code of affine spaces in the class of all groupoids.

Recall that an algebra A of a finite type is called equatzonally complete if the variety generated by A is equationally complete.

Theorem 10 Let (G, \cdot) be an idempotent groupord with $p_{2}(G, \cdot)=$ 1. Then (G, \cdot) is equationally complete of and only if $\left(G_{,}\right)$is either a nontrivial affine space over $G F(3)$ or a nontrival semilattice.

Proof. By [5, Lemma 1] we infer that (G, \cdot) is elther a nontrivral Steiner quasigroup or a nontrivial near-semilattice. First observe that any nontrıvial affine space over $G F(p)$ is equationally complete
([14]). Further, let (G, \cdot) be a nontrivial Steiner quasigroup then it is obvious that the subgroupoid $G(a, b)$ generated by two distinct elements $a, b \mathrm{~m} G$ is isomorphic to three-element affine space over $G F(3)$, namely it is isomorphic to the groupord $G(3)=(\{0,1,2\}, 2 x+2 y)$ where $(\{0,1,2\},+)$ is a group of order 3 . Clearly, the variety V_{1} generated by $G(3)$ is contaned in the variety V_{2} generated by (G, \cdot). Since the variety generated by $G F(3)$ is equationally complete, this is precisely the variety of all affine space over $G F(3)$ and we get that $V_{1}=V_{2}$ provided V_{2} is equationally complete Analogously, any nontrivial near-semilattice (G, \cdot) contains a two-element semılattice and therefore of (G, \cdot) is equationally complete then (G, \cdot) must be a semilattice, completing the proof of the theorem.

In [3], we find the following.
Proposition 11. Let (G, f) be a nontrivial symmetric algebra of type (4) satisfynng the identaty $f(x, y, y, y)=x$. Then (G, f) is a nontrival affine space over $G F(3)$ if and only of $p_{4}(G, f)=5$.

Combining some earlier results we have the following.
Theorem 12. Let (G, \cdot) be an idempotent groupoud with $p_{2}(G, \cdot)=$ 1. Then the following condtions are equivalent
(1) (G.) is a nontrival affine space over $G F(3)$;
(2) $p_{4}(G, \cdot)=5$ (without the assumption $p_{2}(G, \cdot)=1$;
(3) $p_{3}(G)=$,3 and the clone of (G, \cdot) is mmmal;
(4) $\left(G_{\cdot} \cdot\right)$ иs equationally complete and $p_{n}\left(G_{1} \cdot\right)>1$ for some $n \geq 3$;
(5) (G, \cdot) is equationally complete and (G, \cdot) satisfies a nonregular identity;
(6) $\left(G_{1} \cdot\right)$ satisfies a nontrival strongly regular identuty and a nonregular adentity.

Proof. The equivalence (i) \Leftrightarrow (ii) is contained in Proposition 3. The equivalence (1) \Leftrightarrow (iii) follows from Theorem 5 The equivalence (i) \Leftrightarrow (iv) can be deduced from Theorem 10 . Using the same argument as in the proof of Theorem 10, one can obtain the equivalence (iv) \Leftrightarrow (v). We prove the equivalence (1) $\Leftrightarrow(\mathrm{v})$. It is clear that any nontrivial affinc space over $G F(3)$ satisfies a strongly regular identıty, e.g., the
medial law, and it also satisfies a nonregular identity, e.g, $x y^{2}=x$. The converse follows from [4], [7] and Theorem 1.

Theorem 13. If an adempotent algebra (A, Ω) with $p_{2}(A, \Omega) \geq 2$ contains a Steiner quasigroup as a reduct, then $p_{2}(A, \Omega) \geq 5$

Proof. Suppose $(A,+)$ is such a reduct of (A, Ω). Since $p_{2}(A, \Omega) \geq$ 2, we infer that (A, Ω) contans another essentially binary term, say $x \cdot y$. If $x \cdot y$ is commutative, then we prove that the terms $x+y$, $x y,(x+y)+x y, x y+y$ and $y x+x$ are parwise distinct essentially binary terms. Indeed, if for example $x y+y=y$, then we have $y=$ $y+y=(x y+y)+y=x y$, a contradiction. If $x y+y=r$ then we also have the contradiction that $x y=x+y$. If $x y+y=y x+x$ then we obtain the contradiction $x=y$, and so on. Thus we: have that $p_{2}(A, \Omega) \geq(A,+, \cdot) \geq 5$. Assume that $x \cdot y$ is noncommutative. Then we consider the terms $x+y, x y, y x, x y+y$ and $y x+x$. By the same argument as above, we see that $x y+y$ is essentially binary and $x y+y \neq x y$. If $x y+y=y x$, then $x y+y x=y$, which is a contradiction. Obviously $x+y \neq x y+y$. Assume $x y+x=y x+x$. Then we consider the following essentially binary terms $x+y, x y, y x$, $x y+y$ and $(x+y)+(x y+y)$, and we see that they are pairwise distinct. Thus $p_{2}(A, \Omega) \geq(A,+, \cdot) \geq 5 \mathrm{n}$ this case as well, which completes the proof.

3. Appendix

We summarize here all known characterizations of affine space over $G F(3)$ ma list.

For a groupold (G, \cdot) the following conditions are equivalent:
(1) (G, \cdot) is an affine space over $G F(3)$,
(2) (G, \cdot) represent the sequence $\left(0,1,1,3, \ldots, \frac{2^{n}-(-1)^{n}}{3}, \ldots\right)$,
(3) The sequence $(0,1,1,3,5)$ is the code of (G, \cdot) in the class of all groupoids,
(4) (G, \cdot) is idempotent and $p_{4}(G, \cdot)=5$,
(5) (G, \cdot) is commutative, idempotent and $p_{n}(G, \cdot)=\frac{2^{n}-(-1)^{n}}{3}$ for some $n \geq 4$,
(6) (G, \cdot) is a nontrivial medial Steiner quasigroup;
(7) $(G \cdot \cdot)$ is a Steiner quasigroup whose clone is minimal;
(8) ($G, \cdot)$ is a nontrivial Steiner quasigroup in which $\left(\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\right) x 5$ is symmetric;
(9) (G, \cdot) is a nontrivial Steiner quasigroup satisfying a nontrivial linear identity;
(10) (G, \cdot) is commutative, $p_{3}(G, \cdot)=3$ and the clone of (G, \cdot) is minimal;
(11) $p_{2}(G, \cdot)=1$ and (G, \cdot) is medial satisfyıng a nonregular identity;
(12) $p_{2}(G, \cdot)=1$ and (G, \cdot) is satisfics both a nonregular identity and a nontrivial strongly regular dentity,
(13) $p_{2}\left(G_{\cdot}\right)=1, p_{n}(G, \cdot)>1$ for some $n>1$ and the clone of (G, \cdot) is nummal,
(14) $p_{2}(G, \cdot)=1,(G, \cdot)$ satisfies a nonregular identity and the clone of (G, \cdot) is minimal;
(15) $p_{2}(G)=1,,(G, \cdot)$ is equationally complete and $p_{\pi}(G, \cdot)>1$ for some $n \geq 3$,
(16) $p_{2}(G, \cdot)=1,(G, \cdot)$ is equationally complete and (G, \cdot) satisfies a nonregular identity;
(17) $p_{2}(G, \cdot)=1,(G, \cdot)$ is medıal, idempotent, but not a semilattice;
(18) $p_{3}(G, \cdot)=3,(G \cdot \cdot)$ is commutative, idempotent and equationally complete;
(19) ($G, \cdot)$ is medral idempotent totally commutative groupoid which is not a semilattice;
(20) $p_{3}(G)<7,,(G, \cdot)$ is not a semplattice and the clone of (G, \cdot) is minimal,
(21) (G, \cdot) is a commutative idempotent groupoid which is not a semlattice and every term over ($G, \cdot)$ is equal to a linear term:
(22) (G, \cdot) is idempotent and equationally complete with $p_{3}(G, \cdot) \leq$ 6
(23) (G, \cdot) is a nontrivial Stemer quasigroup and $p_{4}\left(G_{\cdot} \cdot\right) \leq 35$,
(24) (G,) is a nontrivial Steiner quasigroup with $p_{n}(G, \cdot)<\frac{7}{8} n$! for some $n \geq 5 ;$
(25) (G, f) is a symmetric algebra of type (4) satisfying $f(x, y, y, y)=$ x and $p_{4}(G, f) \geq 5$.

In this connection, we raise the following problems.
Problem 1. Let (G, \cdot) be an adempotent groupord. Is it true that (G, \cdot) is an affine space over $G F(3)$ if and only of $p_{n}(G, \cdot)=\frac{2^{n}-(-1)^{n}}{3}$ for some $n \geq 4$.

Problem 2. Let (G, \cdot) be an adempotent groupoid which is equationally complete. Examine p_{n}-sequences of such groupoids. Note that there exists no equationally complete idempotent groupord with $p_{3}(G, \cdot)=6$.

References

[1] J. R Cho and S H. Kim, Totally commutatzve sdempotent groupozds, preprint..
[2] B. Csákány, On affine spaces over prame fields, Acta Scı Math. 37 (1975), 33-36.
[3] J. Dudek, An affine space over $G F(3)$ as a 4 -groupord, Proc Symposium on n-ary structures, Skopje, 1982, pp 243-249
[4] J. Dudek, Varreties of adempotent commutative grouponds, Fund Math 120 (1984), 193-204
[5] J Dudek, On the minamal extension of sequences, Algebra Universalis 23 (1986), 308-312.
[6] J. Dudek, A polynomial chanacterzzation of affine spaces over GF (3), Colloq Math. 50 (1986), 161-171
[7] J Dudek, Polynomials in adempotent commutatave groupords, Dissertationes Math. 286 (1989), 1-55
[8] J Dudek, The unique minmal clone with three essentzally binary operations, Algebra Unıversalıs 27 (1990), 201-209
[9] J Dudek, A characterization of distributive Stener quaszgroups and semilattices, Discuss Math., Algebra and Stochastic Methods 15 (1995), 101-119
[10] G Gratzer, Universal Algebra, 2nd ed., Sprınger-Verlag, New York-HeidelbergBerlın, 1979
[11] G Gratzer and A Kısielewicz,, A survey of some open problems on p_{n}-sequences and free spectra of algebras and vareetzes, Unversal Algebra and Quasigroup Theory, A Romanowska and J D H Smuth (eds) (1992), Helderman Verlag, Berhn, 57-88
[12] G Gratzer and R. Padmanabhan,, On commutative, zdempotent and nonassocaative groupozds, Proc Amer Math Soc 28 (1971), 75-78
[13] F. Ostermann and J Schmidt,, Der baryzentrische Kalkul als axiomtasche Grundlage der affinen Geometure, J reme angew. Math 224 (1966), 44-57
[14] J Płonka, R-prome 2dempotent reduct of abelaan groups, Archuv der Math 24 (1973), 129-132
[15] A Romanowska and J D H Smith, Modal Theory, an algebraic approach to order. geometry and convextty, Helderman Verlag, Berlin, 1985.
[16] J Soubhn, Etude algebrique de la notion de moyenne, J Math. Pures et App 50 (1971), 53-264
[17] Á Szendreı, Clones in unvversal algebra, (Université de Montréal, Montréal, 1986)

Department of Mathematics
Pusan Natıonal Unıversity
Pusan 609-735, Korea
E-mall: jungcho@hyowon.pusan.ac.kr

