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ON ^-SEQUENCES OF UNIVERSAL ALGEBRAS

Jung .Rae Cho

Abstract We study how the -sequence of a universal algebra de­

termine the structure of the algebra Regarding term equivalent alge­

bras as the same algebras, we consider the problem when the algebras 

are group oids.

1. Introduction

A term - -. , rrn) over an abstract algebra A — (A, Q) is
called n-ary if it involves n distinct variables and essential if it depends 
on each variable it involves in the sense that, for each i = 1,2,... 
there are ⑶,.,^+1,・. . ,and b,c m A such that

We denote by pn(A) the number of essentially n-ary term functions 
over and the sequence (狄)。4)逐1以)/2(/4)〉..)is called the pn- 
sequence of A

A groupoid is called trivial if it has only one element and proper if 
the term xy is essentially binary.

Two algebras (A, QJ and (A,〈&) on the same underlying set A are 
said to be term equivalent if they have the same term functions, that 
is, any Qi-term can be written as an and vice versa.
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For simplicity of our notation, we inductively define groupoid terms 
by xyl = xy and xyk+l = (xyk)y^ and use the expression X1X2 • - - xn-ixn 
for ((- , •(X1X2) - - - )xn-Y)xn

A groupoid (G, •) is said to be medial if it satisfies the identity 
{xy){uv) = (xu)(yv)^ and distributive if it satisfies the x{yz) = (xy)(xz) 
and (xy)z = (xz](yz). A commutative idempotent groupoid is called a 
semilattice if it is a semigroup, a near-sermlattice if it satisfies xy2 = xy^ 
and a Steiner quasigroup if it satisfies xy2 = x.

An affine space over a field K is algebraically defined to be the full 
idempotent reduct of a vector space over K ([2,13,15,17]). However, 
when 나le base field is the Galois field G如(3) with three element, any 
affine space over GF (3) is term equivalent to a medial Steiner quasi­
group ([12]). Thus we will treat an affine space over GF(3) as a medial 
Steiner quasigroup in this paper.

We say a sequence a = (do,(如”題，•…)(finite or infinite) of cardinals 
is called representable if 나lere is an algebra A such that p(A) = a, that 
is, = an for all n, and call a the pn-sequence of A in this case. 
If, furthermore, A is from a given 이ass K of algebra, we say that a is 
representable m K or A represents a in K.

A clone on a set A is a, collection of operations on A which is closed 
under compositions and contains all projections. A 이one C is called 
minimal if the lattice of subclones of C has only two elements. This 
means that Card(^4)丰 1 and any term in C together with projections 
generates C

For further concepts and notations not defined in this paper, we 
refer the readers to [1 이 and [11].

A term ... , xn) over a groupoid (G, •) will be called linear
term if each variable appears at most once in 난le expression.

2. Theorems and proofs

Theorem 1. Let (G, ■) be a nontrivial Steiner quasigroup. Then 
the following conditions are equivalent:

(1) (G ,) %s an affine space over GF(3);
(2) (G, •) is medial;
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(3) The clone of (G, •) is rmmmal;
(4) The term /(中，叼危论点加站)=((⑦湿2)(⑦3£4))%5 浇 symmet- 

rzc;
(5) For a certain n > 4, an n-ary term admits a nontrivial permu­

tation.

Proof. The fact that the condition (i) implies any of the remaining 
one is not hard, to check except the implication (i) => (iii), which can 
be deduced from [14]. The implication (li) => (i) is contained in [12]. 
Using [& Lemma 3.2], one can easily prove (iii)=A (ii). Now we prove 
(iv) =추 (i) If /(xi, . - - ：工5)is symmetric, then we obtain that

(⑦成 2)3*4)=((中％2)(£3工4))((边卫2)(⑦萨4))

=((。仲3)(©却4))(3輝2)(工3⑦ 4))

=(3匸力2)愆时4))((中£3)(£2%4))

=((T1X3)(X2X4))((X13：3)(^2^4))

=(边⑦3)(⑦2⑦4)・

The implication (v)今(ii) follows from [4,Theorem 4].

Now we recall a theorem of Gatzer and Padmanabhan from [12].

Proposition 2. If A is an algebra, then A is a nontrivial affine 
space over GF(3) if and only zfpn(A)= ――亍 丿 for all n. Moreover, 
if A is a groupoidj then it suffices to assume pn(A) =  =一스- only 
for n = 0,1,2,3,4.

With this theorem is connected

Proposition 3. ([67 Theorem]) Let (G, •) be an idempotent groupoid. 
Then (G, •) zs a nontrivial affine space over GF(3) if and only zf 
P4(G,-) = 5.

Note that there exist idempotent groupoids (G, •) satisfying pn(4)= 
2 for all n < 3 which are not affine spaces over GF(3) ([16]) 
This means that ,4(G, j = 5 is the first number of the pn-sequence 
which uniquely determines the structure of an idempotent groupoid, 
and such groupoids are affine spaces over GF(3) (see Theorem 9)
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Theorem 4. Let (G, •) be a commutahve idempotent groupozd. Then 
(G, •) is a nontrivial affine space over GF(3)苛 and only 寸 Pn(G> •)= 
2 一户)_ 诉 some n > 4.

Proof. If (G, •) is a nontrivial afRne space over GF(3)y i.e., (G, •)= 
(G, 2x + 2g), where ((?, +) is an abelian group of exponent 3, then 
pn(Gy •) = 2 -f M for all n by [이. Let now pn(G, j = ' 一授) for 
some n > 4. Then (G, •) is not a semilattice since pn(G, -) = 1 for ail n 
if (G, j is a semilattice. If (G, j is also not an affine space over GF(3), 
then by [7,Theorem 1] we obtain that pn(G, •) > 3n-1 for all n > 4. 
Hence,七-技)> 3n for all n > 4, which is not true. Thus (G, j is 
an affine space over GF(3).

In this connection we conjecture that if (G, •) is an idempotent 
groupoid (not necessarily commutative), then (G, •) is a nontrivial 
affine space over GF(3) if and only if pn(G, •) = ? 一亳기，一 for some 
n > 4 (compare with Theorem 6).

THEOREM 5. Let (G, •) be a commutahve idempotent groupoid. Then 
(G •) zs a nontrivial affine space over GF(3) if and only if •) = 3 

and the clone of (G, •) zs mimmaL

Proof. If (G, •) is a nontrivial affine space over GF(3), then triv­
ially p3(G, •) = 3 and the clone of (G, •) is minimal by [14] Assume 
that p3(G, •) — 3 and 나시one of (G, ) is minimal. By [9,Theorem 
1.2], (G, •) is a nontrivial distributive Steiner quasigroup. Then by 
Theorem 1 (G, ) is an affine space over GF(3).

Note that m this theorem the assumption that (G, •) is commutative 
is essentially needed. Indeed, if (G, +) is an abelian group of exponent 
4, then we have pa(G, *) = 3 for the groupoid (G「)= (G, 2x + 3y). 
Obviously (G, •) is a noncommutative idempotent groupoid and is not 
an affine space over GF(3).

Theorem 6. Let (G, •) be an idempotent groupoid with P2(G, *) = 1 

Then the following condihons are equivalent:
(1) (G, j is an affine space over GF(3);
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(2) Pn(G)j = 스二$?丄) for some n > 4;
(3) (G，j zs medial and satisfies a nonregular identity;
(4) p3(G, j = 3 and the clone of (G, •) is minimal

Proof. Since P2(G, •) = 1, we infer that (G, •) is commutative and 
hence the equivalence (i)(ii) follows from Theorem 4. According to 
[5,]? the groupoid (G, •) is either a nontrivial Steiner quasigroup or a 
nontrivial near-semilattice. The implication (i) => (hi) is obvious since 
any affine space over GF(3) is a medial Steiner quasigroup and hence 
(G ■) satisfies a nonregular identity, namely xy2 = x. The implication 
(hi)=A (i) follows from [4] and Theorem 1 The equivalence (i) <=> (iv) 
is contained m Theorem 5.

Recall that a groupoid (G, •) is called totally commutative if every 
essentially binary term is commutative. Further,

Proposition 7 ([1]) Let (G, •) be an proper medial idempotent 
groupoid. Then the following conditions are equivalent:

(1) (G, j zs an totally commutative;
(2) (G, •) is either a semzlattice or an affine space over GF(3);
(3) P2(G •) = 1.

Theorem 8 Let (G, •) be a proper idempotent groupoid. Then 
(G,is a nonmedial distnbuhve Steiner quaszgroup if and only zf 
P2(G, •) = 1, P3(G j = 3 and pn(G, •) > 3n~1 for all n > 4.

Proof. If (G, ■) is nonmedial distributive Steiner quasigroup, then 
by Theorem 1 we infer that (G, •) is not an affine space over GF(3). 
Obviously 处(G, j = 1 and p3(G, ) — 3 for such groupoids. Using 
[7,Theorem 5 1], we get that pn(G, •) > 3n-i for all n > 4 Let now 
但2(0 -) — 1 and p3(G, •) = 3. Thus (G, ) is a commutative idempotent 
groupoid. According to [9,Theorem 1.2], the groupoid (G, •) is a dis­
tributive Sterner quasigroup. Since pn(Gy j > 3n-1, we infer that (G, j 
is nonmedial. Indeed, if (G, •) is medial, then the (G, j is an affine space 
over GF(3} by Theorem 1 and we will have ? -技). = pn(G, •) > 3n-1 
for all n > 4, which is impossible. This completes the proof.
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The code of an algebra X is a finite sequence q = (po Q4),.. •,但m (』)) 

such that the pn-sequence p = 3oG4),Pi("4),,2(/4), ■ • •) is the unique 
extension of q and m is the smallest number with this property.

Theorem 9. Let (G, •) be an nontrivial groupoid. Then the follog 
mg conditions are equivalent:

(1) (G, •) zs a nontrivial affine space over GjF(3);
(2) (G, •) represents the sequence a— (0,1,1,3,...,---- 业--- ,. . •)；
(3) The sequence (0,1,1, 3, 5) is the code of (G, j m the class of all 

groupozds.

Proof. The equivalence (i) o (n) is by Theorem 2. The implica­
tion (iii)二〉(i) follows from the definition of the code and Theorem 2. 
We prove here the implication (i) =수 (iii). Since semilattices also repre­
sent (0,1,1), this sequence does not determine affine spaces over GF(3). 
Thus (0,1,1) is not the code of an affine space. If (G, •) represents 
(0,1,1,3), then (G, •) is a commutative idempotent groupoid and by 
[9,Theorem 1 2] we infer that (G, •) is a nontrivial distributive Steiner 
quasigroup. Since there exist nonmedial distributive Steiner quasi­
groups ([16]), obviously representing (0,1,1,3), we deduce by applying 
the preceding theorem that for such groupoids we havepn(G, •) > 3n-1 
for all n > 4. Thus these groupoids are not affine spaces over GF(3) 
(see Theorem 2). Thus (0,1,1, 3) is not 나le code of affine spaces over 
GF(3). If (G j represents (0,1,1,3, 5), then (G, •) is a nontrivial affine 
space over GF(3) by Theorem 4. Thus, (0,1,1,3, 5) is the code of affine 
spaces in the class of all groupoids.

Recall that an algebra 4 of a finite type is called equatzonally com­
plete if the variety generated by A is equationally complete.

Theorem 10 Let (G, •) be an idempotent groupoid wzth P2(G, j = 
1. Then (G, •) is equatzonally complete if and only tf (G, j %s either a 
nontrivial affine space over GF(3) or a nontrivial semilattzce.

Proof. By [5, Lemma 1] we infer that (G,・)is either a nontriv­
ial Steiner quasigroup or a nontrivial near-semilattice. First observe 
that any nontrivial affine space over GF(p) is equationally complete 
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([14]). Further, let (G, •) be a nontrivial Steiner quasigroup 나}en it 
is obvious that the subgroupoid G(a, 6) generated by two distinct ele­
ments a.b m G is isomorphic to three-element affine space over GF(3), 
namely it is isomorphic to the groupoid G(3) = ((0,1,2}. 2x+2y) where 
({0,1, 2), +) is a group of order 3. Clearly, the variety V\ generated by 
G(3) is contained m the variety generated by (G, •). Since the variety 
generated by GF(3) is equationally complete, this is precisely the vari­
ety of all affine space over GF(3) and we get that 崎=% provided 
is equationally complete Analogously, any nontrivial near-semilattice 
(G, •) contains a two-element semilattice and therefore if (G, •) is equa- 
tionally complete 난(G, •) must be a semilattice, completing the 
proof of the theorem.

In [3], we find the following.

Proposition 11. Let (G, /) be a nontrzvzal symmetric algebra of 
type (4) satisfying the zdentity y, y, y) = x. Then (G, /) is a non­
trivial affine space over GF(3) if and only z/p4(G, /) — 5.

Combining some earlier results we have 난le following.

Theorem 12. Let (G j be an idempotent groupoid with p2(G, •)= 

1. Then the following conditions are equivalent
(1) (G ) zs a nontrivial affine space over GF(3);
(2) j = 5 (without the assumption P2(G, j = 1;
(3) P3(G, ) = 3 and the clone of (G, •) is minimal;
(4) (G j zs equationally complete andpn(G, •) > 1 for some n > 3;
(5) (G, j is equationally complete and (G, j satisfies a nonregular 

identity;
(6) (G, j satisfies a nontrzvzal strongly regular identity and a non­

regular identity.

Proof. The equivalence (i) <=> (li) is contained m Proposition 3. 
The equivalence (i)(in) follows from Theorem 5 The equivalence
(i) O (iv) can be deduced from Theorem 10. Using the same argument 
as in the proof of Theorem 10, one can obtain the equivalence (iv) o 
(v). We prove the equivalence (i) V》(vi). It is clear that any nontrivial 
affine space over GF(3) satisfies a strongly regular identity, e.g., the 
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medial law, and it also satisfies a nonregular identity, e.g , xy2 = x. 
The converse follows from [4], [7] and Theorem 1.

Theorem 13. If an idempotent algebra (A, Q) with p2(A)Q、) > 2 
contains a Steiner quasigroup as a reduct, then 卩2(厶，Q) > 5

Proof. Suppose (A, +) is such a reduct of (A, Q). Since P2(A, Q) > 
2, we infer that (A, Q) contains another essentially binary form, say 
⑦ • g. 1( x • y is commutative, 나len we prove that the terms x + y. 
工 (z + ") + xy, xy + y and yx + x are pairwise distinct essentially 
binary terms. Indeed, if for example xy + y = 나len we have y = 
y + y = (xy + ;)+，= xy, a contradiction. If xy + y = i then we 
also have the contradiction 난lat xy x + y. If xy + y = yx + x 
then we obtain 나le contradiction x = 小 and so on. Thus w(; have 
that P2(A, Q) > (A, +, •) > 5. Assume that x ■ y is noncommutative. 
Then we consider the terms x + yy xy^ yx^ xy y and yr + x. By 
the same argument as above, we see that xy + y is essentially binary 
and xy + y xy. xy + y = yx^ then xy 4- yx = which is a 
contradiction. Obviously x + y xy y. Assume xy + x yx + x. 
Then we consider the following essentially binary terms rr + y, xyy yx^ 
^y + y and (：】서3)+ (钩 + 饥, and we see that they are pairwise distinct. 
Thus 卩2(4 Q) > Q4, +, •) > 5 m this case as well, which completes 반le 
proof.

3. Appendix

We summarize here all known characterizations of affine space over 
GF(3) m a list.

For a groupoid (G, •) the following conditions are equivalent:
(1) (G j is an affine space over GF(3),
(2) (G j represent the sequence (0、1,1,3,.. , 으上二그)二 ...),

(3) The sequence (0,1,1, 3, 5) is the code of (G, •) in the class of all 
groupoids,

(4) (G, •) is idempotent and p4(G, •) = 5,
(5) (G j is commutative, idempotent and pn(C, •)= 广广 for 

some n > 4,
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(6) (G, •) is a nontrivial medial Steiner quasigroup;
(7) (G, •) is a Steiner quasigroup whose 시one is minimal;
(8) (G, •) is a nontrivial Steiner quasigroup in which ((£佟2)33⑦4))班 

is symmetric;
(9) (G, j is a nontrivial Steiner quasigroup satisfying a nontrivial 

linear identity;
(10) (G, -) is commutative, pa(G, •) = 3 and the clone of (G, •) is 

minimal;
(11) P2(G, -) — 1 and (G, j is medial satisfying a nonregular identity;
(12) 但2(G, j = 1 and (G〉j is satisfies both a nonregular identity 

and a nontrivial strongly regular identity,
(13) P2(G, •) = 1, pn(G. •) > 1 for some n > 1 and 난le clone of (G, •) 

is minimal,
(14) P2(G j = L (G •) satisfies a nonregular identity and the clone 

of (G, j is minimal;
(15) ) = 1)(G7 •) is equationally complete and pn(G, ■) > 1 

for some n > 3,
(16) P2(G, •) = L (G, •) is equationally complete and (G, •) satisfies 

a nonregular identity;
(17) -) = 1, (G, •) is medial, idempotent, but not a semilattice;
(18) P3(G, •) = 3, (G, •) is commutative, idempotent and equation- 

ally complete;
(19) (G •) is medial idempotent totally commutative groupoid which 

is not a semilattice;
(20) P3(G, ) < 7, (G, •) is not a semilattice and the 이one of (G, -) is 

minimal,
(21) (G, ■) is a commutative idempotent groupoid which is not a 

semilattice and every term over (G, ■) is equal to a linear term,
(22) (G j is idempotent and equationally complete with pa(G, ■) < 

6；
(23) (G, -) is a nontrivial Steiner quasigroup and p4(G, •) < 35,
(24) (G, ) is a nontrivial Steiner quasigroup with pn(G, •) V 긍n! for 

some n > 5;
(25) (G f) is a symmetric algebra of type (4) satisfying f(x, y, y、y)= 

x and p4((J, /) > 5.
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In this connection, we raise the following problems.
Problem 1. Let (G，j be an idempotent groupoid. Is it true that 

(G, j is an affine space over GF(3) and only z/pn(G, •) =   §一— 

for some n > 4.
Problem 2. Let (G, •) be an idempotent groupoid which is equation- 

ally complete. Examine pn-sequences of such groupozds. Note that there 
exists no equationally complete idempotent groupoid with p3(G, •) = 6.
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