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ON p,-SEQUENCES OF UNIVERSAL ALGEBRAS

JuNG.RAE CHO

ABSTRACT We study how the p,-sequence of a uruversal algebra de-
termine the structure of the algebra Regarding term equivalent alge-
bras as the same algebras, we consider the problem when the algebras
are groupoids.

1. Introduction

A term f(z),%a,...,2,) over an abstract algchra A = (4,Q) 1s
called n-aryif 1t involves n distinct vanables and essential if it depends
on each vanable it involves in the sense that, for each 2 = 1,2.... | n,
there are ay, .,G,_1,a,41,...,0, and b, ¢ 1n A such that

flay,. . Vo1, biagy, . an) # f(a'la--- Oy, C g, ... Oy,

We de_noto by pn(A) the number of essentially n-ary term functions
over A, and the sequence (pg(A),p1(A),p2(A),.. ) is called the p,-
sequence of A

A groupoid 1s called frunal if it has only one element and proper 1f
the term zy 15 essentially binary.

Two algebras (A, {1;) and (A4, Q2) on the same underlying set A are
sard to be term equivalent if they have the same term functions, that
is, any (-term can be written as an (2o-term and vice versa.
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For simplicity of our notation, we inductively define groupoid terms
by zy! = zy and zy**! = (2y*)y, and use the expression z( 72 « - - Tn—1Zn
for ((---(z122) -+ )Tn_1)Tn

A groupoid (G,-} 1s said to be medial if it satisfies the identity
(zyHuv) = (zu)(yv), and distrbutive if it satisfies the z(yz) = (zy)(zz)
and (zy)z = (z2)(yz}. A commutative idempotent groupoid is called a
semalattice if it is a semigroup, a near-semulattice if it satisfies xy? = zy,
and a Stewner quasigroup if it satisfies zy? = x.

An affine space over a field K 1s algebraically defined to be the full
idempotent reduct of a vector space over K ({2,13,15,17]). However,
when the base field is the Galois field GF(3) with three element, any
affine space over GF(3) is term equivalent to a medial Steiner quasi-
group ([12]). Thus we will treat an affine space over GF(3) as a medial
Steiner quasigroup in this paper.

We say a sequence a = {ag, a1, as,...) (finite or infinite) of cardinals
is called representable if there is an algebra A such that p(A) = a, that
is, pn(A) = a, for all n, and call a the p,-sequence of A in this case.
If, furthermore, A is from a given class K of algebra, we say that a is
representable m K or A represents a in K.

A clone on a set A 1s a collection of operations on A which is closed
under compositions and contains all projections. A clone C is called
manimal 1f the lattice of subclones of C has only two elements. This
means that Card(A4) $# 1 and any term in C together with projections
generates C

For further concepts and notations not defined in this paper, we
refer the readers to [10] and [11].

A term f(x),22.... ,2,) over a groupoid (G, ) will be called hnear
term 1f each variable appears at most once in the expression.

2. Theorems and proofs

THEOREM 1. Let (G,) be a nontrunal Stewner quasigroup. Then
the follounng conditions are equivalent:

(1) (G,-) 15 an affine space over GF(3);

(2) (G,-) is medial;
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(3} The clone of (G,-) is minwmal;

(4) The term f(x1,72,23,%4,25) = ((z122){2324))T5 25 symmet-
705

(5) For a certain n > 4, an n-ary term aedmats a nontrwvial permu-
tation.

Proor. The fact that the condition (i) implies any of the remaining
one is not hard-to check except the implication (i) = (iii), which can
be deduced from [14]. The implication (1) = (1} 1s contained in [12].
Using {8, Lemma 3.2}, onc can easily prove (iii) = (h). Now we prove
(iv) = (1) If f(zq,- - ,z5) is symmetric, then we obtain that

(.’131.’132)(.’!:3134) = ((:L‘ixg)(.’L‘g.’)?4))(($1$2)((113$4)
= ((z123)(z224)) ((x1 72} (2374)
= ((m122)(2374)) ((z173) (7274)
= ((z123)(w2z4))((2123)(T24)

= (1813)3) (.’L‘g.’L‘4) .

)
)
)
)

The implication (v) = (ii) follows from {4, Theorem 4].

Now we recall a theorem of Gatzer and Padmanabhan from [12].

PrOPOSITION 2. If A 15 an algebra, then A 13 a nontrival affine
space over GF(3) if and only +f p,(A) = 2—1_(—3_-1)—‘ for all n. Moreover,
of A is a groupord, then it suffices to assume pp(A) = 2_—1;_1ﬁ only
forn=0,1,23,4.

With this theorem is connected

PRrROPOSITION 3. (/6, Theorem/]) Let (G, -) be an wdempotent groupoid.
Then (G,-) 1s a nontrunal affine space over GF(3) of and only of
p4(G,-) =5.

Note that there exist idempotent groupoids (G, -) satisfying p,(A) =
Z=CN7 for all n < 3 which are not affine spaces over GF(3) ([L6])
This means that ps(G,-) = 5 1s the first number of the p,-sequence

which uniquely determines the structure of an idempotent groupoid,
and such groupoids are affine spaces over GF(3) (see Theorem 9)
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THEOREM 4. Let (G, ) be a commutatwe idempotent groupord. Then
(G,-) 15 a nontrnal affine space over GF(3) of and only of po(G,-) =
271—*(;—1)'— for some n > 4.

Proor. If (G,-) is a nontrivial affine space over GF(3), i.e., (G,-) =
(G,2z + 2y), where (G,+) 15 an abelian group of exponent 3, then
(G, ) = w for all n by [2]. Let now po(G,-) = 31#— for
some n > 4. Then (G, ") is not a semilattice since p,{G,-) = 1 for alln
if (G, -) is a semilattice. If (G, -) is also not an affine space over GF (3},
then by {7,Theorem 1] we obtain that p,(G,-) > 3*7! for all n > 4.
Hence, g-n———({l—)n > 3" for all n > 4, which 1s not true. Thus (G, -} is
an affine space over GF'(3).

In this connection we conjecture that if (G,-) is an idempotent
groupoid {not necessarily commutative), then (G,-) is a nontrivial
affine space over GF(3) if and only if p,(G,-) = iﬁ;%:ﬁ for some
n > 4 (compare with Theorem 6).

THEOREM 5. Let (G, -) be a commutatwe idempotent groupoid. Then
(G,) 1s a nontrwnal affine space over GF(3) 1f and only «f p3(G,-) =3
and the clone of (G,-) 18 mwnamal.

Proor. If (G,-) is a nontrivial affine space over GF(3), then triv-
ally p3{G,-) = 3 and the clone of (G, ) 1s minimal by {14] Assume
that p3(G,-) = 3 and the clone of (G, ) 158 minimal. By [9,Theorem
1.2], (G,-) is a nontrivial distributive Steiner quasigroup. Then by
Theorem 1 (G, ) is an affine space over GF(3).

Note that i this theorem the assumption that (G, -) is commutative
is essentially nceded. Indeed, if (G, +) 18 an abelian group of exponent
4, then we have p3(G,-) = 3 for the groupod (G, ) = (G, 2x + 3y).
Obviously (G,-) is a noncommutative idempotent groupoid and is not
an affine space over GF(3).

THEOREM 6. Let (G, -} be an idempotent groupord unth p2(G,-) =1
Then the following conditions are equivalent:

(1) {(G,-) 1s an affine space over GF(3);
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(2) pa(G,-) = 2_(5—_1)‘ for some n > 4;
(3) (G,-) s medal and satisfies a nonregular identuty;
(4) p3(G.-) =3 and the clone of (G,-) 1 mumel

Proor. Since po{G,-) = 1, we infer that (G, -) is commutative and
hence the equivalence (i) « (i) follows from Theorem 4. According to
[5,], the groupaid (G,-) is cither a nontrivial Steiner quasigroup or a
nontrivial near-semilattice. The implication (1) = (i1i) 1s obvious since
any affine space over GF'(3) 1s a medial Stemer quasigroup and hence
(G,-) satisfies a nonregular identity, namely zy? = z. The implication
(i11) = (i) follows from [4} and Theorem 1 The equivalence (i) < (iv)
1s contained 1n Theorem 5.

Recall that a groupoid (G,) is called fotally commutatzve if every
essentially binary term is commutative. Further,

ProposiTioN 7 ([1]) Let (G,-) be an proper medial wdempotent
groupoid. Then the following conditions are equivalent:

(1) (G,-) s an totally commutative;
(2) (G,-) 18 erther a semulattice or an affine space over GF(3);
(3) p2(G.) =L

THEOREM 8 Let (G,-) be a proper idempotent groupoid. Then
(G,-) is a nonmedial distributwe Steer quasigroup if and only o
p2(G,) =1, p3(G,+) =3 and p,(G,-) > 377! for alln > 4.

Proor. If (,-) 1s nonmedial distributive Steiner quasigroup, then
by Theorem 1 we infer that (G,-) is not an affine space over GF\(3).
Obviously po(G,-) = 1 and p3(G, ) = 3 for such groupoids. Using
[7,Theorem 5 1], we get that p,(G,-) > 37! for all n > 4 Let now
p2(G,-) = 1 and p3(G,-) = 3. Thus (G, )1s a commutative idempotent
groupoid. According to {9, Theorem 1.2}, the groupoid (G,-) is a dis-
tributive Steiner quasigroup. Since p, (G, -) > 377!, we mnfer that (G, -)
is nonmedial. Indeed, f (G, ) is medial, then the (G, -) is an affine space

over GF(3) by Theorem 1 and we will have 2_(37“]}“ = pp(G,-) > 37!

for all » > 4, which is impossible. This completes the proof.
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The code of an algebra A is a finite sequence q = (po(A), ... , P (A4))
such that the p,-sequence p = (po( A}, p1(A),p2(A),...) is the unique
extension of q and m is the smallest number with this property.

THEOREM 9. Let (G,-) be an nontrunal groupord. Then the follow-
wng conditrons are equivalent:

(1) (G,") 1s a nontrunal affine space over GF(3);

(2) (G,-) represents the sequence a=(0,1,1,3,... ,2-11(3*;)“,...);
(3) The sequence (0,1,1,3,5) 15 the code of (G, -} . the class of all
groupoids.

PrRoOOF. The equivalence (1) < (n) is by Theorem 2. The implica-
tion (ui) = (1) follows from the definition of the code and Theorer 2.
We prove here the implication (1) = (iii). Since semtlattices also repre-
sent (0, 1, 1), this sequence does not determine affine spaces over GF(3).
Thus (0,1, 1) 15 not the code of an affine space. If (G,-) represents
{0,1,1,3), then (G,-) 1s a commutative idempotent groupoid and by
(9,Theorem 1 2| we infer that (G,-) is a nontrivial distributive Steiner
quasigroup. Since there exist nonmedial distributive Steiner quasi-
groups ([16]), obviously representing (0,1,1,3), we deduce by applying
the preceding theorem that for such groupoids we have p,(G,-) > 3"~}
for all n > 4. Thus these groupoids are not affine spaces over GF(3)
(see Theorem 2). Thus (0, 1,1, 3) 1s not the code of affine spaces over
GF(3). If {(G.-) represents (0, 1,1, 3,5), then (G, -) is a nontrivial affine
space over GF(3) by Theorem 4. Thus, (0,1, 1,3, 5} is the code of affine
spaces in the class of all groupoids.

Recall that an algebra A of a finite type is called equationally com-
plete if the variety generated by A is equationally complete.

THEOREM 10 Let (G,-) be an idempotent groupord urth pa(G,-) =
1. Then (G,-) s equationally complete of and only +f (G,-) 15 either a
nontrinal affine space over GF(3) or a nontrinal semilattice.

PrOOF. By [5, Lemma 1] we infer that (G,-) is either a nontriv-
1al Steiner quasigroup or a nontrivial near-semilattice. First observe
that any nontrivial affine space over GF(p} is equationally complete
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([14]). Further, let {G.-) be a nontrivial Steiner quasigroup then it
18 obvious that the subgroupoid G{a,b) generated by two distinct ele-
ments a, b in G 18 isomorphic to three-element affine space over GF(3),
namely it 1 1somorphic to the groupoid G(3) = ({0, 1, 2}. 22+2y) where
({0.1,2}, +) is a group of order 3. Clearly, the variety V) generated by
G(3) is contained 1n the variety V; generated by (G, ). Since the variety
generated by GF'(3) is equationally complete, this is precisely the vari-
ety of all affine space over GF(3) and we get that V) = V5 provided V2
is equationally complete Analogously, any nontrivial near-semilattice
(G,-) contains a two-element semilattice and therefore if (G, -) 1s equa-
tionally complete then (G.-) must be a semilattice, completing the
proof of the theorem.

n [3], we find the following.

PROPOSITION 11. Let (G, f) be a nontravial symmetric algebra of
type (4) satisfyrng the wdentity f(z,y,y,y) = z. Then (G, f) 15 a non-
trunal affine space over GF(3) 1f and only +f pa(G, f) =5

Combining some earlier results we have the following.

THEOREM 12. Let (G.-) be an wdempotent groupoid with p2(G,-) =
1. Then the following conditions are equwalent

(1) (G. ) 18 a nontrunal affine space over GF(3);
( ) pa(G.-) =5 (wrthout the assumption pr(G. ) = 1;

(3) p;(G’ ) = 3 and the clone of (G,-) s mwnamal;
(4) (G.-) s equationally complete and p,, (G, ) > 1 for somen > 3;
(5) (G -} 15 equationally complete and (G, -) satisfies a nonregular
wdentity,
(6) (G,-) satisfies a nontrinal strongly reqular wdentity and a non-

regular wdentity.

PROOF. The equivalence (1) < (i) s contained 1n Proposition 3.
The equivalence (1) < (i) follows from Theorem 5 The equivalence
(i) & (iv) can be deduced from Theorem 10. Using the same argument
as in the proof of Theorem 10, one can obtain the equivalence (iv) &
{v). We prove the equivalence (1) « (vi). It is clear that any nontrivial
affinc space over GF(3) satisfies a strongly regular identity, e.g., the
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medial law, and it also satisfies a nonregular 1dentity, e.g, zy* = z.
‘The converse follows from [4], [7] and Theorem 1.

THEOREM 13. If an idempotent algebra (A, Q) with p2{A, Q) > 2
contains a Steiner quasigroup as a reduct, then po(A,) > 5

PROOF. Suppose {4, +) is such a reduct of (4,Q). Since pa( A, Q) >
2, we infer that (A,(}) contains another essentially binary term, say
z-y. If -y is commutative, then we prove that the terms z + v,
zy, (x +y) + zy, 2y + y and yz + r are parwise distinct essentially
binary terms. Indeed, if for example zy + y = ¥, then we have y =
y+y=(xy +y) +y = 2y, a contradiction. If zy + y = r then we
also have the contradiction that 2y = z+y. Ifzy+y = yz + z
then we obtain the contradiction z = y, and so on. Thus we have
that pa(A4,Q) > (A,+,) > 5. Assume that x - y is noncomnutative.
Then we consider the terms z + y, 2y, yz, zy + ¥ and y» + . By
the same argument as above, we see that xy + y is essentially binary
and zy +y # zy. If zy + y = yz, then xy + yz = y, which is a
contradiction. Obviously z +y # a2y + y. Assume zy +z = yr + .
Then we consider the following essentially binary terms = + y, 2y, yz,
zy+y and (z+y)+ (zy+y), and we see that they are pairwise distinct.
Thus p3(A4,Q) > (4,+,-) > 5 1n this case as well, which completes the
proof.

3. Appendix

We summarize here all known characterizations of affine space over
GF(3) m a list.

For a groupoid (G, ) the following conditions are equivalent:

(1) (G,) is an affine space over GF(3),
2V (~1)"*

(2) (G,-) represent the sequence (0,1,1,3, .. P )

(3) The sequence (0,1, 1,3,5) is the code of (G, -) in the class of all
groupoids,

(4) (G,-) is idempotent and p4(G,-) = 5,

(5) (G,-) is commutative, 1dempotent and p,(G,-) = “W_E%L_l)n for

some n > 4,
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(6) (G,-) is a nontrivial medial Steiner quasigroup;
{7) (G.) 15 a Steiner quasigroup whose clone is minimal;
(8) (G, -)isanontrivial Steiner quasigroup in which ((zy22)(z324))x5
Is symmetric;
(9) (G,-) is a nontrivial Steiner quasigroup satisfying a nontrivial
linear identity;
(10) (G,-) is commutative, p3(G,-) = 3 and the clone of (G,-) is
minimal;
(11) p2(G,-) =1 and (G, -) is medial satisfying a nonregular identity;
(12) po(G,-) = 1 and (G,-) is satisfics both a nonregular 1dentity
and a nontrivial strongly regular identity,
(13) p2(G.-) =1, pp(G.-) > 1 for some n > 1 and the clone of (G, )
is munimal,
(14) po(G,-) = 1, (G, -) satisfies a nonregular identity and the clone
of (G,-) 1s minimal;
(15) p2(G. ) =1, (G,-) is equationally complete and p,(G,-} > 1
for some n. > 3,
(16) p2(G,-) = 1, (G, ") is equationally complete and {G, -) satisfies
a nonregular identity;
(17) p2{G.-}) =1, (G, ") is medial, idempotent, but not a semilattice;
(18) p3(G,-) = 3, (G,-) is commutative, idempotent and equation-
ally complete;
(19) (G.-) s medial idempotent totally commutative groupoid which
18 not a semilattice;
(20) p3(G, ) <7, (G,-) is not a semilattice and the clone of (G, -) 1s
minimal,
(21) {G, ') 18 a commutative idempotent groupoid which is not a
semilattice and every term over (G, -) 15 equal to a linear term,
(22) (G, -) s 1dempotent and equationally complete with ps(G, -} <
6;
(23) (G, -) 1s a nontrivial Steiner quasigroup and ps(G,-) < 35,
(24) (G, )15 a nontrivial Steiner quasigroup with p,(G,-) < Zn! for
some n > b;
(25) (G, f)isasymmetric algebra of type (4) satisfying f(z,y,v,9) =
x and py{(G, f) > 5.
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In this connection, we raise the following problems.

PROBLEM 1. Let (G,-) be an wdempotent groupod. Is it true that
(G,) s an affine space over GF(3) of and only 1f pa(G,-) = g—;%:—*l)—
for some n > 4.

PROBLEM 2. Let (G,-) be an idempotent groupoid which is equation-
ally complete. Ezamane p,-sequences of such groupotds. Note that there
ezists no equationally complete idempotent groupord with p3(G,-) = 6.
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