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THE KÜNNETH SPECTRAL SEQUENCE FOR COMPLEXES

OF BANACH SPACES

HeeSook Park

Abstract. In this paper, we form the basis of the abstract theory for con-

structing the Künneth spectral sequence for a complex of Banach spaces.
As the category of Banach spaces is not abelian, several difficulties occur

and hinder us from applying the usual method of homological algebra
directly. The most notable facts are the image of a morphism of Banach

spaces is not necessarily a Banach space, and also the closed summand

of a Banach space need not be a topological direct summand. So, we
consider some conditions and categorical terms that fit the category of

Banach spaces to modify the familiar method of homological algebra.

1. Introduction

Motivated by Noskov’s construction [10] of the Hochschild-Serre spectral
sequence for bounded cohomology of a discrete group G with real coefficients
R, the first attempt for this paper is to construct the Künneth spectral sequence
for bounded cohomology.

Before proceeding, we define the following terms in advance for a simple
description.

Definition 1.1. Let f : U → V be a bounded linear map of Banach spaces.
We define the terms Ker f and Im f as

Ker f = {u ∈ U | f(u) = 0} and Im f = f(U) = {f(u) | u ∈ U}.

As Ker f = f−1(0), Ker f is a closed subspace of U and so it is a Banach
space. However, Im f may not be a closed subspace of V and so it may not be
a Banach space.

Now, we recall briefly the definition of bounded cohomology Ĥ∗(G) of a
discrete group G with coefficients in R. For each n > 0, we consider the space
Bn(G) and a boundary operator dn : Bn(G)→ Bn+1(G), where
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(1) Gn is the n-product of G so that Gn = G× · · · ×G︸ ︷︷ ︸
n

;

(2) Bn(G) is the space of all bounded functions f : Gn → R with the norm
‖f‖ = sup{|f(x)| | x ∈ Gn};

(3) dn : Bn(G)→ Bn+1(G) is defined by the formula

dn(f)(g1, g2, . . . , gn+1)

= f(g2, . . . , gn+1) +

n∑
i=1

(−1)if(g1, . . . , gi−1gi, . . . , gn+1) + f(g1, . . . , gn).

It is easy to check that every dn is a bounded linear map with dn+1 ◦dn = 0.
Notice that Bn(G) has a Banach space structure with respect to this norm ‖·‖.
So

0
d−1=0−−−−→ R d0=0−−−→ B1(G)

d1−→ B2(G)
d2−→ · · ·

is a complex of Banach spaces and its nth cohomology is defined as Ĥn(G) =
Ker dn/Im dn−1. As Ker dn is a closed subspace of the normed space Bn(G),

Ĥn(G) is the quotient space of a normed space. However, as the space of

coboundaries Im dn−1 may not be closed; Ĥn(G) has the natural seminorm
induced by the norm on Bn(G) and it may not have a Banach space structure.

From this point of view, Mitsumatsu [9] defined its reduced cohomology as

Ĥn(G) = Ker dn/Im dn−1,

where Im dn−1 denotes the norm closure of Im dn−1. Then this reduced coho-

mology Ĥn(G) has a norm and so a Banach space structure.

In general, let V = {· · · → V n−1 dn−1

−−−→ V n
dn−→ V n+1 dn+1

−−−→ · · · } be a
complex of Banach spaces, where V ∗ are Banach spaces and boundary operators
d∗ are bounded linear maps.

As usual, its nth cohomology Hn(V) is defined as

Hn(V) = Ker dn/Im dn−1.

In this case, Hn(V) has the natural seminorm induced by a norm on V n and so
has a topological vector space structure rather than a Banach space structure.
On the other hand, its reduced cohomology defined as

Hn(V) = Ker dn/Im dn−1

is a normed space and so a Banach space. Notice that, in both Hn(V) and

Hn(V) cases, a boundary operator dn : V n → V n+1 does not provide a familiar
short exact sequence of Banach spaces. For example, neither the sequence from
Hn(V)

0→ Ker dn → V n → Im dn → 0

nor the sequence from Hn(V)

0→ Ker dn → V n → Im dn → 0
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can be exact in the category of Banach spaces, unless Im dn is closed. Further-
more, let

(1.1) 0→ A
ϕ−→ B

ψ−→ C→ 0

be a short exact sequence of complexes of Banach spaces. As shown in [5],
there is an exact sequence

(1.2) · · · → Hn−1(C)
δn−1

−−−→ Hn(A)
Hnϕ−−−→ Hn(B)

Hnψ−−−→ Hn(C)→ · · ·
of cohomology as topological vector spaces, and a semiexact sequence

(1.3) · · · → Hn−1(C)
δn−1

−−−→ Hn(A)
Hnϕ−−−→ Hn(B)

Hnψ−−−→ Hn(C)→ · · ·
of reduced cohomology as Banach spaces. Let d∗A, d∗B , and d∗C denote the
boundary operators of the complexes A, B, and C, respectively. The conditions
for the images of d∗• to be closed affect the exactness of the sequences (1.2) and
(1.3). If the images of all these boundary operators d∗• are closed, then the
sequences (1.2) and (1.3) are the same. In fact, from Theorem 2 in [5] we have
the followings:

Theorem 1.2. From the exact sequence (1.1) of complexes of Banach spaces,
the followings hold;

(1) If the image of dnA is closed, then the image of dn−1
C is closed if and

only if the subspace ImHnϕ is closed in Hn(B);
(2) If the image of dn−1

B is closed, then the image of dn−1
A is closed if and

only if the subspace ImHnψ is closed in Hn(C);
(3) If the image of dn−1

C is closed, then the image of dn−1
B is closed if and

only if the subspace Imδn−1 is closed in Hn(A).

Now we return to our main subject: the Künneth spectral sequence. We
recall the following theorem in [7] as the ordinary case of abelian category
which we will modify.

Theorem 1.3. Let (K∗, dK) and (L∗, dL) be differential graded modules over
a ring R with K∗ flat. Then there is a spectral sequence with

Ep,q2 =
⊕
s+t=q

TorpR
(
Hs(K∗), Ht(L∗)

)
.

If K∗ and L∗ have differentials of degree +1, then this is a second quadrant
spectral sequence. When E∗,∗r converges, it does so to H(K∗ ⊗R L∗, d⊗).

If we consider only the vector space structure of a complex of Banach spaces,
then we have the same result as Theorem 1.3. But, as explained above, consid-
ering the Banach space structure of it, the ordinary method of homological al-
gebra will not work properly on a complex of Banach spaces and so on bounded
cohomology. Hence, we must consider some properties of the category of Ba-
nach spaces. For example, we need to check several categorical terms such as
exact sequences of Banach spaces, tensor product, projective resolutions for Tor
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functor, flat Banach spaces, and so forth. In the following section, we briefly
study these properties. Based on them, in Section 3, we construct the Künneth
type spectral sequence for a complex of Banach spaces first in a general form
and then, as an example, apply it to bounded cohomology.

Throughout this paper, we consider only Banach spaces over the field of real
numbers R.

2. Basic properties in the category of Banach spaces

In this section, we study some terms and properties of Banach spaces that
are needed for our construction of the Künneth spectral sequence. Although
we must explain these terms in the category of Banach spaces, to avoid some
categorical difficulties, we only collect the necessary properties for our purposes
here and refer all details to [1], [2], and [3].

Definition 2.1. Let U and V be Banach spaces. A morphism f : U → V is a
linear map of the underlying vector spaces which is continuous with respect to
the topologies defined by the norms.

Notice that a morphism of Banach spaces is a bounded linear map. It is easy
to check that the class of Banach spaces with morphisms forms a category. We
denote this category by Ban.

Remark 2.2. Ban is an additive category that has finite (co)products. However,
infinite (co)products do not exist in Ban as explained in [2].

In the following, we review the categorical definitions of the objects relating
to a morphism in Ban.

Remark 2.3. Let f : U → V be a morphism in Ban.

(1) The kernel of f is identified with Ker f .

(2) The cokernel of f is identified with V/f(U) and is denoted by Cok f .
(3) The image of f is defined as the kernel of its cokernel. It is identified

with f(U).
(4) The coimage of f is defined as the cokernel of its kernel. It is identified

with U/Ker f .

Notice that our definition of Im f is not an object in Ban. In fact, the
categorical definition of the image of f : U → V in Ban is f(U). Since the
coimage and image of f are not isomorphic as Banach spaces, Ban is not an
abelian category.

Remark 2.4. Let f : U → V be a surjective morphism in Ban.

(1) The quotient space U/Ker f and V are isomorphic as Banach spaces by
the Open Mapping Theorem. Thus V and the cokernel of the inclusion
morphism i : Ker f → U are isomorphic as Banach spaces.
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(2) f is a cokernel, that is, there is a morphism g : W → U such that

U/g(W ) and V are isomorphic as Banach spaces. Conversely, if a
morphism in Ban is a cokernel, then it is surjective. Thus, in Ban, a
morphism is a cokernel if and only if it is surjective.

For Banach spaces U with a norm ‖ · ‖U and V with a norm ‖ · ‖V , we
consider their algebraic tensor product U ⊗ V and define the projective tensor
norm ‖ · ‖π on U ⊗ V as follows: for ω ∈ U ⊗ V ,

‖ω‖π = inf

{
n∑
i=1

‖ui‖U‖vi‖V , where ω =

n∑
i=1

ui ⊗ vi

}
,

where the infimum is taken over all representations of ω ∈ U ⊗ V .

Definition 2.5. The projective tensor product of Banach spaces U and V is
defined as the completion of U ⊗ V with respect to the projective tensor norm
‖ · ‖π. It is denoted by U⊗̂V .

Notice that w ∈ U⊗̂V if and only if, for every ε > 0, there are ui ∈ U and
vi ∈ V such that

ω =

∞∑
i=1

ui ⊗ vi and ‖ω‖π ≤
∞∑
i=1

‖ui‖U‖vi‖V ≤ ‖ω‖π + ε

and also
∑∞
i=1 ‖ui‖U‖vi‖V <∞.

As we know it, the tensor product ⊗ in the category of vector spaces is a
right exact functor and so it preserves epimorphisms. Recall that, in general,
a morphism f : A → B in a category is called an epimorphism if g ◦ f = 0
for every morphism g : B → C implies g = 0. Also, in the category of vector
spaces, a morphism is an epimorphism if and only if it is surjective.

Proposition 2.6. A morphism f : U → V of Banach spaces is an epimorphism
if and only if Im f is dense in V , that is f(U) = V .

Proof. Suppose Im f = f(U) = Y and g ◦ f = 0 for a morphism g : V → W .

Then g (f(U)) = 0 and so, by continuity of g, g
(
f(U)

)
= g(V ) = 0. Hence

g = 0 and so f is an epimorphism.
Conversely, let f be an epimorphism and consider a projection p : V →

V/f(U). Then p ◦ f = 0 and so p = 0. Hence V = f(U). �

Remark 2.7. We state some elementary properties of the projective tensor
product on Banach spaces. We refer to [2] for proofs and in details.

Let U , V , and W be Banach spaces and HomBan(U, V ) denote the space of
all morphisms f : U → V .

(1) U⊗̂V is a Banach space.
(2) ⊗̂ is symmetric, associative, and additive.
(3) U⊗̂R = R⊗̂U = U .
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(4) Let f ∈ HomBan(U, V ) and g ∈ HomBan(U1, V1). Then the linear map
f⊗g : U⊗U1 → V ⊗V1 extends to a morphism f⊗̂g : U⊗̂U1 → V ⊗̂V1.
Furthermore, suppose f1 ∈ HomBan(V,W ) and g1 ∈ HomBan(V1,W1).
Then (

f1⊗̂g1

)
◦
(
f⊗̂g

)
= (f1 ◦ f) ⊗̂ (g1 ◦ g) .

(5) HomBan(U⊗̂V,W ) = HomBan (U, HomBan(V,W )).
(6) ⊗̂ preserves colimits.
(7) For an epimorphism f : U → V , f⊗̂1W : U⊗̂W → V ⊗̂W is an epimor-

phism.
(8) Let A be a closed subspace of U . If f : U → U/A is the quotient map,

then 1V ⊗̂f : V ⊗̂U → V ⊗̂(U/A) is also a quotient map. The kernel of
1V ⊗̂f is the norm closure of V ⊗A in V ⊗̂U .

Proposition 2.8. Let f : U → V be a surjective morphism of Banach spaces
and X be a Banach space. Then 1X⊗̂f : X⊗̂U → X⊗̂V is surjective. In
particular, the projective tensor product preserves cokernels.

Proof. Since f is surjective, V and U/Ker f are topologically isomorphic. So
we can write f : U → U/Ker f as the quotient map. Then

1X⊗̂f : X⊗̂U → X⊗̂ (U/Ker f)

is also a quotient map by Remark 2.7 and so surjective. Since X⊗̂ (U/Ker f)
and X⊗̂V are isomorphic as Banach spaces, 1X⊗̂f is also surjective.

Recall that a morphism is surjective if and only if it is a cokernel by Remark
2.4. Hence the second statement follows. �

Definition 2.9. A sequence of Banach spaces and morphisms

(2.9.1) · · · → Un+1
∂n+1−−−→ Un

∂n−→ Un−1 → · · ·
is said to be exact if Ker f = Im f .

Proposition 2.10. Let

0→ U
f−→ V

g−→W → 0

be a short exact sequence of Banach spaces. Then there are isomorphisms

Ker g ∼= U and Cok f ∼= W

as Banach spaces. In particular, Im f is a closed subspace of V .

Proof. Notice that f is injective. Since Im f = Ker g, Im f is a closed subspace
of V . Hence U and Im f are topologically isomorphic. So U and Ker g are
topologically isomorphic. Also, notice that g is surjective. Hence Cok f and
W are topologically isomorphic from Remark 2.4. �

Recall that the dual space X∗ of a Banach space X is the normed space of
all bounded linear functional on X with the operator norm and is a Banach
space. Notice that X∗ = HomBan(X,R).
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Corollary 2.11. A short sequence of Banach spaces

0→ U
f−→ V

g−→W → 0

is exact if and only if the sequence of Banach spaces

0→W ∗
g∗−→ V ∗

f∗−→ U∗ → 0

is exact.

Proof. By the duality principle in [1], the dual space functor preserves and
reflects kernel-cokernel exact sequence. By Proposition 2.10, our exact sequence
of Banach spaces are kernel-cokernel exact sequence. �

Definition 2.12. A Banach space X is said to be flat if, for every short exact
sequence of Banach spaces

(2.12.1) 0→ U
f−→ V

g−→W → 0,

the sequence of Banach spaces

(2.12.2) 0→ X⊗̂U 1X⊗̂f−−−−→ X⊗̂V 1X⊗̂g−−−−→ X⊗̂W → 0

is exact.

Corollary 2.13. Consider the exact sequences of Banach spaces (2.12.1) and
(2.12.2) in Definition 2.12. Then there are isomorphisms of Banach spaces:

(1) Im (1X⊗̂f) ∼= X⊗̂Im f ;
(2) Ker (1X⊗̂g) ∼= X⊗̂Ker g;
(3) Cok (1X⊗̂f) ∼= X⊗̂Cok f .

Proof. Since the sequences (2.12.1) and (2.12.2) are exact, Im f and Im (1X⊗̂f)
are closed by Proposition 2.10. So f and 1X⊗̂f are topologically injective.
This shows the first two isomorphisms. For the third isomorphism, recall that
W ∼= Cok f and X⊗̂W ∼= Cok (1X⊗̂f) by Proposition 2.10. �

Corollary 2.14. Let

U : · · · → Un−1 dn−1

−−−→ Un
dn−→ V n+1 dn+1

−−−→ · · ·
be a complex of Banach spaces such that Im dn is closed for every n. Suppose
X is a flat Banach space. Then there are isomorphisms of Banach spaces:

(1) Im (1X⊗̂dn) ∼= X⊗̂Im dn;
(2) Ker (1X⊗̂dn) ∼= X⊗̂Ker dn;
(3) Ker (1X⊗̂dn)/Im (1X⊗̂dn−1) ∼= X⊗̂Hn(U).

Proof. Since every image of dn is closed, we have the following exact sequences
of Banach spaces

0→ Ker dn
in−→ Un

dn−→ Im dn → 0;(2.14.1)

0→ Im dn−1 jn−→ Ker dn
pn−→ Hn(U)→ 0.(2.14.2)
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Since X is flat, there are induced exact sequences of Banach spaces

0→ X⊗̂Ker dn
1X⊗̂in−−−−→ X⊗̂Un 1X⊗̂dn−−−−→ X⊗̂Im dn → 0;(2.14.3)

0→ X⊗̂Im dn−1 1X⊗̂jn−−−−→ X⊗̂Ker dn
1X⊗̂pn−−−−→ X⊗̂Hn(U)→ 0.(2.14.4)

From Corollary 2.13, we get the first two topological isomorphisms directly.
For the third one, recall that X⊗̂Im dn−1 and Im (1X⊗̂jn) are topologically
isomorphic. Then

X⊗̂Hn(U) ∼= Cok (1X⊗̂jn)

∼= X⊗̂Ker dn/X⊗̂Im dn−1 ∼= Ker (1X⊗̂dn)/Im (1X⊗̂dn−1). �

Definition 2.15. A short exact sequence of Banach spaces

0→ U → V →W → 0

is called pure if its dual exact sequence

0→W ∗ → V ∗ → U∗ → 0

is split.

Proposition 2.16. Let

(2.16.1) 0→ X → Y → Z → 0

be a short exact sequence of Banach spaces.

(1) Assume Z is flat. Then X is flat if and only if Y is flat.
(2) Assume Y is flat. Then the sequence (2.16.1) is pure if and only if Z

is flat.
(3) Assume the sequence (2.16.1) is pure. Then, for every Banach space

V , the sequence

0→ X⊗̂V → Y ⊗̂V → Z⊗̂V → 0

is exact.

Proof. This is Corollary 2.5.3 and Proposition 2.5.4 in [1]. �

Notice that if the sequences (2.14.1) and (2.14.2) in Corollary 2.14 are pure,
then for every Banach space X, we have the same exact sequences and results
as the sequences (2.14.3) and (2.14.4).

As the Künneth type spectral sequence involves the Tor functor, we need to
construct a projective resolution and a Tor functor in Ban.

Remark 2.17. By definition, an object P in a category C is projective if for any
epimorphism f : X → Y and any morphism g : P → Y , there is a morphism
f̄ : P → X such that f ◦ f̄ = g. In Ban, consider a strict inclusion morphism
β : X ↪→ Y such that β is an epimorphism. Then a morphism γ : R→ Y such
that γ(1) = y ∈ Y \ X can not be lifted to X. So the ground field R is not
categorically projective. Recall that a ground field R is a direct summand of
every nonzero Banach space. Hence only the zero object is projective in Ban.
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Definition 2.18. A Banach space U is called projective if, for a short exact
sequence of Banach spaces 0→ X → Y → Z → 0, the induced sequence

0→ HomBan(U,X)→ HomBan(U, Y )→ HomBan(U,Z)→ 0

is exact in Ab: the category of abelian groups.

Notice that a projective Banach space is not a projective object in Ban.
Especially, the ground field R is projective in the sense of Definition 2.18.

Remark 2.19. We state some basic properties of projective Banach spaces.

(1) Let S be an index set. Then `1S(R) =
∐
s∈S Rs, where Rs ≡ R.

(2) Every Banach space U can be written as a quotient of an `1-space `1S(R)
for some index set S.

(3) Every `1S(R) for some index set S is a projective Banach space.
(4) There are enough projectives in the category of Banach spaces.
(5) A Banach space P is projective if and only if P is isomorphic to `1S for

some index set S.

For the proof for Remark 2.19, we refer to [1] and [2].

Proposition 2.20. Every projective Banach space is flat.

Proof. Let 0→ X → Y → Z → 0 be an exact sequence of Banach spaces and
U be a projective Banach space. Recall that by the duality principle, the dual
sequence of Banach spaces

0→ Z∗ → Y ∗ → X∗ → 0

is also exact. Since U is projective, the sequence

(2.20.1) 0→ HomBan (U,Z∗)→ HomBan (U, Y ∗)→ HomBan (U,X∗)→ 0

is exact. Recall that, by Corollary 2.11, the sequence

(2.20.2) 0→ U⊗̂X → U⊗̂Y → U⊗̂Z → 0

is exact if and only if the sequence
(2.20.3)

0→ HomBan(U⊗̂Z,R)→ HomBan(U⊗̂Y,R)→ HomBan(U⊗̂X,R)→ 0

is exact. Notice that the sequences (2.20.1) and (2.20.3) are equivalent by
Remark 2.7. Thus the sequence (2.20.3) is exact. Hence the sequence (2.20.2)
is exact and U is flat. �

Now we construct a projective resolution of a Banach space.

Definition 2.21. A resolution of a Banach space U is a sequence of Banach
spaces and morphisms

(2.21.1) · · · ∂4−→ P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ U
∂−1=0−−−−→ 0

which is exact.
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This resolution (2.21.1) is called projective if every Pn is projective for n ≥ 0.
Also we say this resolution is of finite length if there is an integer n such that
Pk = 0 for k > n.

As a resolution (2.21.1) of a Banach space U is exact, every image of ∂n
is closed for n ≥ 0. Hence, for each n ≥ 0, there is an induced short exact
sequence of Banach spaces of the form

0→ Ker ∂n → Pn → Im ∂n → 0.

Proposition 2.22. Let U be a Banach space. Then there is a projective reso-
lution of U .

Proof. Since a Banach space U is a quotient of a projective Banach space
by Remark 2.19, there is a projective Banach space P0 and a quotient map
ε0 : P0 → U . Since ε0 is surjective, P0/Ker ε0 and U are isomorphic as Banach
spaces. So we have a short exact sequence of Banach spaces

0→ Ker ε0
i0−→ P0

ε0−→ Im ε0 → 0,

where i0 is an inclusion map and so a morphism in Ban. Similarly, since Ker ε0
is a Banach space, there is a projective Banach space P1 and a quotient map
ε1 : P1 → Ker ε0. So there is a short exact sequence of Banach spaces

0→ Ker ε1
i1−→ P1

ε1−→ Ker ε0 → 0.

By induction, for every n ≥ 1, there is an exact sequence of Banach spaces

0→ Ker εn
in−→ Pn

εn−→ Ker εn−1 → 0,

where Pn is projective. We define ∂n : Pn → Pn−1 by ∂n = in−1 ◦ εn for every
n ≥ 1. It is clear that each ∂n is a bounded linear map and so a morphism of
Banach spaces. Then there is a sequence of morphisms

· · · → P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

ε0−→ U → 0

in which each Pn is projective. It is clear ε0 is surjective and

Im ∂1 = ∂1(P1) = i0(ε1(P1)) = i0(Ker ε0) = Ker ε0.

Also, since in is injective and εn is surjective, for each n ≥ 1, we have

Im ∂n = ∂n(Pn) = in−1(εn(Pn)) = εn(Pn) = Ker ∂n−1.

Hence this sequence is exact. �

In the category of Banach spaces, a projective resolution of a Banach space
U is not unique. As similar to vector spaces, the Comparison Lemma holds in
Ban and so any two of them are chain homotopically equivalent as shown in
[3].

Let U and V be Banach spaces. For a projective resolution of a Banach
space V

(2.1) · · · → P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

ε−→ V → 0,
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we have a complex of Banach spaces

· · · → P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0=0−−−→ 0.

Then the induced sequence

(2.2) · · · 1U ⊗̂∂3−−−−→ U⊗̂P2
1U ⊗̂∂2−−−−→ U⊗̂P1

1U ⊗̂∂1−−−−→ U⊗̂P0
1U ⊗̂∂0=0−−−−−−→ 0

is a complex of Banach spaces by Remark 2.7.

Definition 2.23. Let U and V be Banach spaces. From the complex of Banach
spaces (2.2), we define

Torn(U, V ) = Ker (1U ⊗̂∂n)/Im (1U ⊗̂∂n+1).

Notice that, since projective resolutions of U are chain homotopically equiva-
lent, Tor is independent of a choice of a projective resolution. Also, Torn(U, V )
may not be a Banach space.

Theorem 2.24. Let U and V be Banach space and U be flat. Then

(1) Tor0(U, V ) = U⊗̂V ,
(2) Torn(U, V ) = 0 for n > 0.

Proof. Construct the projective resolution (2.1) of V and the induced complex
(2.2) obtained by applying the projective tensor product U⊗̂·.

Let n ≥ 1. Recall that every image of boundary operator ∂n in the sequence
(2.1) is closed and so a Banach space. So we have an exact sequence of Banach
spaces

(2.24.1) 0→ Ker ∂n
in−→ Pn

∂n−→ Im ∂n → 0.

Since U is flat, for n ≥ 1, the induced sequence of Banach spaces

(2.24.2) 0→ U⊗̂Ker ∂n
1U ⊗̂in−−−−→ U⊗̂Pn

1U ⊗̂∂n−−−−→ U⊗̂Im ∂n → 0

is also exact. Hence, by Corollary 2.13, we have

Im (1U ⊗̂∂n+1) ∼= U⊗̂Im (∂n+1) and

Ker (1U ⊗̂∂n) ∼= U⊗̂Ker (∂n) = U⊗̂Im (∂n+1).

This shows that, for n ≥ 1,

Torn(U, V ) = Ker (1U ⊗̂∂n)/Im (1U ⊗̂∂n+1)

∼=
(
U⊗̂Im ∂n+1

)
/
(
U⊗̂Im ∂n+1

)
= 0.

Now we compute Tor0(U, V ). Notice that Ker (1U ⊗̂∂0) = U⊗̂P0 from the
sequence (2.2). Also, from the sequence (2.1), the morphism ε is surjective and
Ker ε = Im ∂1. So, from the sequence (2.24.2), we have

Im (1U ⊗̂∂1) ∼= U⊗̂Im ∂1 = U⊗̂Ker ε.

Since U is flat and the sequence of Banach spaces

0→ Ker ε
in−→ P0

ε−→ V → 0
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is exact, the induced sequence of Banach spaces

0→ U⊗̂Ker ε
1U ⊗̂in−−−−→ U⊗̂P0

1U ⊗̂ε−−−→ U⊗̂V → 0

is also exact. Hence

Tor0(U, V ) = Ker (1U ⊗̂∂0)/Im (1U ⊗̂∂1)

∼=
(
U⊗̂P0

)
/U⊗̂Ker ε

∼=
(
U⊗̂P0

)
/Ker (1U ⊗̂ε)

∼= U⊗̂V. �

3. The Künneth spectral sequence for a complex of Banach spaces

In this section, we frame the Künneth spectral sequence for a complex of
Banach spaces by modifying the Theorem 1.3 in [7] which we stated in the
Introduction.

Since there exist only finite (co)products in Ban, we need some finiteness
conditions on complexes. In addition, as our complexes of Banach spaces have
differentials of degree +1, we deal with a second quadrant spectral sequence as
cohomology and so we have to be careful about the convergence.

Definition 3.1. Let V = {· · · → V n
∂n

−−→ V n+1 → · · · } be a complex of
Banach spaces. A projective resolution of V is a sequence

· · · → P−2 → P−1 → P0 → V→ 0

such that the following commutative diagram (3.1) of projective Banach spaces
P ∗,∗ whose columns P p,∗ are complexes and whose rows are exact:

...
...

...
...

· · · P−2,2 P−1,2 P 0,2 V 2 0

· · · P−2,1 P−1,1 P 0,1 V 1 0

· · · P−2,0 P−1,0 P 0,0 V 0 0

0 0 0 0

δP δP ε

λ−2 λ−1 λ0 ∂0
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This projective resolution (3.1) of V is called proper if the following sequences
are projective resolutions: for every n,

(P1): · · · → P−2,n → P−1,n → P 0,n → V n → 0,

(P2): · · · → Zn(P−2)→ Zn(P−1)→ Zn(P0)→ Zn(V)→ 0,

where Zn(Pk) = kernel of λk : P k,n → P k,n+1,

(P3): · · · → Hn(P−2)→ Hn(P−1)→ Hn(P0)→ Hn(V)→ 0.

Notice that, in a proper projective resolution (3.1) of V, the image of every
morphism in the rows is closed.

Remark 3.2. Let 0 → U
f−→ V

g−→ W → 0 and 0 → U ′
f ′−→ V ′

g′−→ W ′ → 0 be
exact sequences of Banach spaces. Consider the sequence of direct sums

(3.2.1) 0→ U ⊕ U ′ f⊕f
′

−−−→ V ⊕ V ′ g⊕g
′

−−−→W ⊕W ′ → 0.

It is clear that this sequence (3.2.1) is algebraically exact. Since a finite direct
sum of Banach spaces is also a Banach space, the sequence (3.2.1) is an exact
sequence of Banach spaces.

In [3], it is shown that the 3×3 Lemma and the Horseshoe Lemma hold in an
exact category. As an example, a collection of short exact sequences consisting
of kernel-cokernel pairs, such as

0→ X
f−→ V

g−→W → 0

for which f = kernel of g and g = cokernel of f , forms an exact category. In
our case, the short exact sequences of Banach spaces form such a category.

Proposition 3.3. Let V = {· · · → V n
∂n

−−→ V n+1 → · · · } be a complex of Ba-
nach spaces such that every Im ∂n is closed. Then V admits a proper projective
resolution like the diagram (3.1). In particular, the image of every vertical ar-
row in the diagram (3.1) is closed.

Proof. By the assumption that every image of ∂n is closed, the proof is similar
to the case of the complex of vector spaces. So we give a short description
and refer details to [7] and [11]. All we have to check is that every object
appearing in the diagram is a Banach space. First, notice that Ker ∂n, Im ∂n,
and Hn(V) are all Banach spaces for every n. Thus there are short exact
sequences of Banach spaces

0→ Im ∂n−1 → Ker ∂n → Hn(V)→ 0 and

0→ Ker ∂n → V n → Im ∂n → 0.

Recall that every Banach space admits a projective resolution by Proposition
2.22. Let

· · · → PB−1,n → PB0,n → Im ∂n → 0 and · · · → PH−1,n → PH0,n → Hn(V)→ 0

be the projective resolutions of Im ∂n and Hn(V) for each n, respectively.
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For every k and n, we set PZk,n = PBk,n
⊕
PHk,n. It is easy to check

that every PZk,n is a projective Banach space and there is an exact sequence
of Banach spaces

0→ PBk,n → PZk,n → PHk,n → 0

given by inclusion and projection. Then, using the 3 × 3 Lemma and the
Horseshoe Lemma as shown in [3], we can show

· · · → PZ−2,n → PZ−1,n → PZ0,n → Ker ∂n → 0

is a projective resolution of Ker ∂n. Again, by the same argument as above,
from the projective resolutions of Ker ∂∗ and Im ∂n, we can construct a pro-
jective resolution of V n as

· · · → P 1,n → P 0,n → V n → 0,

where P k,n = PBk,n
⊕
PHk,n

⊕
PBk,n+1. Notice it fits into an exact se-

quence

0→ PZk,n → P k,n → PBk,n+1 → 0.

Now, for each n and k, we compute Hn(Pk). First, we have to check the
boundary operator λk : P k,n → P k,n+1. Consider the following commutative
diagram of exact sequences of Banach spaces:

0 PZk,n+1 P k,n+1 PBk,n+2 0

0 PZk,n P k,n PBk,n+1 0.

λk

Notice that λk is the composition

λk : P k,n → PBk,n+1 → PZk,n+1 → P k,n+1.

It is clear that Im λk−1 = PBk,n and Ker λk = PZk,n+1. Thus Hn(Pk) =

PHk,n. Hence Im λk−1 is closed and Hn(Pk) is a Banach space. �

The Künneth spectral sequence is a generalization of the Künneth Theo-
rem that allows us to express H∗

(
U⊗̂V

)
in terms of H∗ (U) and H∗ (V) for

complexes U and V. We check the Künneth Theorem first.

Definition 3.4. We say a complex of Banach spaces V = {V n, ∂n} is positive
in the upper indices (in short, positive) if V m = 0 for m < 0. Also, we say
a complex of Banach spaces V = {V n, ∂n} is bounded above if V n = 0 for
sufficiently large n.

Let U = {Un, dn} and V = {V n, ∂n} be the positive complexes of Banach
spaces. It is easy to see that their projective tensor product U⊗̂V forms a
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positive complex of Banach spaces. In fact, for each nonnegative integer n,

(
U⊗̂V

)n
=
⊕
p+q=n

Up⊗̂V q =

n⊕
p=0

Up⊗̂V n−p

and boundary operator Dn :
(
U⊗̂V

)n → (
U⊗̂V

)n+1
is defined as

Dn =

n∑
p=0

(
dp⊗̂1V + (−1)p1U⊗̂∂n−p

)
.

Proposition 3.5. Let A = {An, ∂n} be a positive complex of flat Banach
spaces such that every boundary operator ∂n is zero. Also, let V = {V n, dn}
be a positive complex of Banach spaces such that every Im dn is closed. Then,
for each n ≥ 0, there is an isomorphism of Banach spaces

Hn(A⊗̂V) ∼=
⊕
p+q=n

Ap⊗̂Hq(V),

where H∗(V) is construed as a complex with zero differentiation. In particular,
the image of every boundary operator of the complex A⊗̂V is closed.

Proof. Notice that A⊗̂V forms a positive complex of Banach spaces with
boundary operators Dn =

∑n
p=0(±)1A⊗̂dn−p.

Since every Ap is a flat Banach space and every Im dq is closed, from Corol-
lary 2.14 there are exact sequences of Banach spaces:

0→ Ap⊗̂Ker dq
1Ap ⊗̂iq−−−−−→ Ap⊗̂V q 1Ap ⊗̂dq−−−−−→ Ap⊗̂Im dq → 0,(3.5.1)

0→ Ap⊗̂Im dq−1 1Ap ⊗̂jq−−−−−→ Ap⊗̂Ker dq
1Ap ⊗̂λq

−−−−−→ Ap⊗̂Hq(V)→ 0.(3.5.2)

By Remark 3.2, the sequence of finite direct sums from (3.5.1)

0→
n⊕
p=0

Ap⊗̂Ker dq →

∑n
p=0(−1)p1Ap ⊗̂in−p

−−−−−−−−−−−−−−→
n⊕
p=0

Ap⊗̂V n−p
∑n

p=0(−1)p1Ap ⊗̂dn−p

−−−−−−−−−−−−−−→
n⊕
p=0

Ap⊗̂Im dn−p → 0

is an exact sequence of Banach spaces. Hence

Ker Dn = Ker

(
n∑
p=0

(−1)p1Ap⊗̂dn−p
)
∼=

n⊕
p=0

Ap⊗̂Ker dn−p,

Im Dn = Im

(
n∑
p=0

(−1)p1Ap⊗̂dn−p
)
∼=

n⊕
p=0

Ap⊗̂Im dn−p.
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Notice that the image of every Dn is closed. Also, from the exact sequence
(3.5.2), there is an exact sequence of Banach spaces
(3.5.3)

0→
n⊕
p=0

Ap⊗̂Im dn−p−1 Jn

−−→
n⊕
p=0

Ap⊗̂Ker dn−p
Λn

−−→
n⊕
p=0

Ap⊗̂Hn−p(V)→ 0,

where

Jn =

n∑
p=0

(−1)p1Ap⊗̂jn−p, Λn =

n∑
p=0

(−1)p1Ap⊗̂λn−p.

Notice that, from the exactness of the sequence (3.5.3), Jn is an injective
morphism and its image is closed. Also, Λn is surjective. Hence there are
isomorphisms

n⊕
p=0

Ap⊗̂Hn−p(V) ∼=

(
n⊕
p=0

Ap⊗̂Ker dn−p

)/( n⊕
p=0

Ap⊗̂Im dn−p−1

)
∼= Ker Dn/Im Dn−1

∼= Hn(A⊗̂V)

as Banach spaces. �

Now, we review the Künneth Theorem for complexes of Banach spaces.

Theorem 3.6. Let {U, d∗} and {V, ∂∗} be the positive and bounded above
complexes of Banach spaces and satisfy the following conditions:

(1) all images of boundary operators d∗ and ∂∗ are closed;
(2) all Im d∗ and H∗(U) are flat.

Then, for each n ≥ 0, there is an isomorphism⊕
p+q=n

Hp(U)⊗̂Hq(V) ∼= Hn(U⊗̂V)

of Banach spaces.

Proof. For dp : Up → Up+1, we set Ker dp = Zp, Im dp−1 = Bp, and Im dp =
Bp+. Notice that the kernels and images of boundary operators d∗ and ∂∗ are
closed and so Banach spaces. Then H∗(U) and H∗(V) are also Banach spaces.
Hence the sequences of Banach spaces

(3.6.1) 0→ Zp
jp−→ Up

dp−→ Bp+ → 0 and 0→ Bp
ip−→ Zp

λp−→ Hp(U)→ 0

are exact.
Since Bp and Hp(U) are flat Banach spaces, the Banach space Zp in the

second sequence (3.6.1) is also flat by Proposition 2.16. Similarly, the Banach
space Up is flat from the first sequence (3.6.1). Hence, both exact sequences
(3.6.1) are pure.
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First, by applying ·⊗̂Hq (V) to the second sequence (3.6.1), we have an exact
sequence of Banach spaces
(3.6.2)

0→
(
B∗⊗̂H∗(V)

)n i∗⊗̂idH∗(V)−−−−−−−→
(
Z∗⊗̂H∗(V)

)n λ∗⊗̂idH∗(V)−−−−−−−−→
(
H∗(U)⊗̂H∗(V)

)n → 0.

Since the first one in the sequences (3.6.1) is pure, we have an exact sequence

0→ Zp⊗̂V q → Up⊗̂V q → Bp+⊗̂V q → 0

of Banach spaces. So there is an exact sequence of complexes of Banach spaces

0→ Z∗⊗̂V
ϕ−→ U⊗̂V

ψ−→ B∗+⊗̂V→ 0,

where ϕ = j∗⊗̂idV and ψ = d∗⊗̂idV . Then, as we saw in the sequence (1.2),
there is an induced exact sequence

· · · → Hn−1
(
U⊗̂V

) Hn−1ψ−−−−−→ Hn−1
(
B∗+⊗̂V

) Λn−1

−−−→ Hn
(
Z∗⊗̂V

)
Hnϕ−−−→ Hn

(
U⊗̂V

) Hnψ−−−→ Hn
(
B∗+⊗̂V

) Λn

−−→ Hn+1
(
Z∗⊗̂V

)
→ · · ·(3.6.3)

of topological vector spaces. Since Z∗ and B∗ are considered as complexes of
flat Banach spaces having zero boundary operators, by Proposition 3.5 there
are isomorphisms

Hn
(
Z∗⊗̂V

) ∼= Z∗⊗̂Hn (V) and

Hn−1
(
B∗+⊗̂V

)
= Hn

(
B∗⊗̂V

) ∼= B∗⊗̂Hn (V)

of Banach spaces. Hence the exact sequence (3.6.3) can be written as

· · · → Hn−1
(
U⊗̂V

) Hn−1ψ−−−−−→ B∗⊗̂Hn (V)
Λn−1

−−−→ Z∗⊗̂Hn (V)

Hnϕ−−−→ Hn
(
U⊗̂V

) Hnψ−−−→ B∗⊗̂Hn+1 (V)
Λn

−−→ Z∗⊗̂Hn+1 (V)→ · · · .(3.6.4)

As in the ordinary case, we can check that every connecting homomorphism
Λn in (3.6.4) has degree 0 and is equal to i∗⊗̂idH∗(V) in (3.6.2). Thus Λn

is injective. From Proposition 3.5, all images of boundary operators of the
complexes Z∗⊗̂Hn (V) and B∗⊗̂Hn (V) are closed. Also, from the exactness
of the sequence (3.6.2),

Im Λ∗ = Im
(
i∗⊗̂idH∗(V)

)
= Ker

(
λ∗⊗̂idH∗(V)

)
and so Im Λ∗ are closed in Z∗⊗̂Hn (V). Hence, from Theorem 1.2(3), all images
of boundary operators of U⊗̂V are closed, so that H∗(U⊗̂V) are also Banach
spaces. Thus (3.6.4) is an exact sequence of Banach spaces. Finally, from
the exact sequences of Banach spaces (3.6.2) and (3.6.4), we get the following
isomorphisms of Banach spaces:(

H∗(U)⊗̂H∗(V)
)n ∼= (Z∗⊗̂H∗(V)

)
/Ker

(
λ∗⊗̂idH∗(V)

)
from (3.6.2)

∼=
(
Z∗⊗̂H∗ (V)

)
/
(
B∗⊗̂H∗ (V)

)
from (3.6.2)

∼= H∗
(
U⊗̂V

)
from (3.6.4). �
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Now, we carry on the Künneth spectral sequence for a complex of Banach
spaces.

Theorem 3.7. Let {U, d∗} and {V, ∂∗} be the positive and bounded above
complexes of Banach spaces satisfying the following conditions:

(1) all images of boundary operators d∗ and ∂∗ are closed;
(2) Us is flat for every s ≥ 0.

Then there is a spectral sequence with

Ep,q2 =
⊕
s+t=q

Torp
(
Hs(U), Ht(V)

)
and it converges to Hn(U⊗̂V) as topological vector spaces.

Proof. Consider a proper projective resolution of V

...
...

...
...

· · · P−2,2 P−1,2 P 0,2 V 2 0

· · · P−2,1 P−1,1 P 0,1 V 1 0

· · · P−2,0 P−1,0 P 0,0 V 0 0

0 0 0 0

δP δP ε

λ−2 λ−1 λ0 ∂0

as shown in the diagram (3.1). Recall that each column is a complex and each
tth row is a projective resolution of V t and so the image of each right arrow
morphism in this diagram is closed. We consider the double complex

Mp, q =
⊕
s+t=q

Us⊗̂P p, t

with morphisms

D′ : Mp, q →Mp+1, q, given by D′ =
∑

(−1)q1⊗ δP

D′′ : Mp, q →Mp, q+1, given by D′′ =
∑

d∗ ⊗ 1 +
∑

(−1)s1⊗ λp .

Notice q is nonnegative and denotes a dimension and p is nonpositive and gives
the homological degree. Since s and t are nonnegative, the double complexMp,q
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for given p and q is a finite coproduct and so is well defined in the category of
Banach spaces. For each n ≥ 0, its total complex is defined as

TMn =
⊕
p+q=n

Mp, q =
⊕
p+q=n

( ⊕
s+t=q

Us⊗̂P p, t
)
.

As the complexes U and V are positive and bounded above, the total complex
TMn for given n is a finite coproduct. So TMn is a Banach space.

Now we check the first and the second filtration. From the second filtration

F qII (TM)n =
⊕
j≥q

 ⊕
s+t=j

Us⊗̂Pn−j, t
 ,

we have [
F qII/F

q+1
II

]
n

=
⊕
s+t=q

Us⊗̂Pn−q, t = Mn−q,q

and so it is the qth row with boundary operators D′ =
∑

(−1)q1⊗̂δP . Thus

IIE
p, q
1 = H

( ⊕
s+t=q

Us⊗̂P p, t,
∑

(−1)q1⊗̂δP

)
which is the homology of qth row in the diagram (3.1). For, fixed s, t with
s+ t = q, the qth row is

· · · → Us⊗̂P−3,t → Us⊗̂P−2,t → Us⊗̂P−1,t → Us⊗̂P 0,t → 0.

This is the complex obtained by applying Us⊗̂· to a projective resolution P p, t

of V t. Hence

IIE
p, q
1 =

⊕
s+t=q

Torp
(
Us, V t

)
.

Since Us is flat, Torp (Us, V t) = 0 for p 6= 0. Hence

IIE
p, q
1 = IIE

0, q
1 =

⊕
s+t=q

Us⊗̂V t.

Then

IIE
0, q
2 = Hq

(
IIE

0, ∗
1

)
= Hq

(
U⊗̂V

)
.

Since this is only a column on the q-axis, it collapses at E2 = E∞. This
establishes

IIE
0, n
2 = Hn

(
U⊗̂V

)
.

Next, we consider the first filtration. For fixed p,

F pI (TM)n =
⊕
j≥p

 ⊕
s+t=n−j

Us⊗̂P j, t
 .

Then [
F pI /F

p+1
I

]
n

=
⊕

s+t=n−p
Us⊗̂P p, t = Mp,n−p.
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Hence

IE
p, q
1 = Hq (pth column of M∗,∗)

= Hq
(
U∗⊗̂P p, ∗, D′′ =

∑
dU ⊗ 1 +

∑
(−1)s1⊗ λp

)
.

As shown in Proposition 3.3, for each p, the image of every vertical arrow
λp : P p,t → P p,t+1 in the diagram (3.1) is closed. So its cohomologyHt(P p, ∗) is
a Banach space. Also, by Definition 3.1, the kernel Zt(Pp) of λp : P p, ∗ → P p,∗

and its cohomology Ht(P p, ∗) are projective Banach spaces. So they are flat by
Proposition 2.20. Hence, by Proposition 2.16 and the exact sequence of Banach
spaces

0→ Im λp,t−1 → Ker λp,t → Ht(P p,∗)→ 0,

Im λp,t−1 is also flat. So, from Theorem 3.6, we have a topological isomorphism

IE
p, q
1 = Hq

(
U∗⊗̂P p, ∗

) ∼= ⊕
s+t=q

Hs (U) ⊗̂Ht (P p, ∗) .

Then

IE
p, q
2 = Hp

(
IE
∗, q
1

)
= Hp

( ⊕
s+t=q

Hs (U) ⊗̂Ht (P ∗, ∗)

)
.

So we need to compute Hp
(⊕

s+t=qH
s (U) ⊗̂Ht (P ∗, ∗)

)
. Since the sequence

· · · → Ht (Pp)→ · · · → Ht
(
P−1

)
→ Ht (Pp)→ Ht(V)→ 0

is a projective resolution of Ht(V), the cohomology of its induced complex
obtained by applying Hs(U)⊗̂· is defined as Torp (Hs(U), Ht(V)). Hence

IE
p, q
2 = Hp

( ⊕
s+t=q

Hs (U) ⊗̂Ht (P ∗, ∗)

)
=
⊕
s+t=q

Torp
(
Hs(U), Ht(V)

)
.

Lastly, to show the convergence of this spectral sequence, we check the fil-
tration is bounded. Since the complexes U and V are positive, Us = 0 and
V t = 0 for every negative integers s and t. Also, since they are bounded above,
there exist positive integers s0 and t0 such that Us = 0 for every s > s0 and
V t = 0 for every t > t0. Let m = s0 + t0 − 2. Then, since p is nonpositive,
(TM)n = 0 for every n > m. It is clear that, for both the first and the second
filtrations, {0} ⊂ F 0(TM)0 = TM0.

From the first filtration, it is easy to check that for each dimension n > 0,

{0} ⊂ F 0(TM)n ⊂ F−1(TM)n ⊂ · · · ⊂ Fn−m(TM)n = (TM)n.

Also, for each dimension n < 0,

{0} ⊂ Fn(TM)n ⊂ Fn−1(TM)n ⊂ · · · ⊂ Fn−m(TM)n = (TM)n.

Similarly, from the second filtration, we can check for each dimension n with
0 < n ≤ m,

{0} ⊂ Fm(TM)n ⊂ Fm−1(TM)n ⊂ · · · ⊂ Fn(TM)n = (TM)n.
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Also, for each dimension n < 0,

{0} ⊂ Fm(TM)n ⊂ Fm−1(TM)n ⊂ · · · ⊂ F 0(TM)n = (TM)n.

Hence the filtrations are bounded and so the spectral sequence converges to
Hn

(
U⊗̂V

)
. �

We consider the case of bounded cohomology. First, notice that we need
the bounded above condition on the complex in Theorem 3.7 to define the total
complex as a finite product in the category of Banach spaces and also to get a
bounded filtration.

However, for a discrete group G, the space of any n-dimensional bounded
cochains Bn(G) = {f : Gn → R | ‖f‖ < ∞} is never 0. For example, even for
the trivial group {e}, we have Bn({e}) = R for every n ≥ 0. Thus, the bounded
above condition on the complex in Theorem 3.7 is not applicable to bounded
cochain complex {B∗(G)} in general, and so we need to modify it.

Remark 3.8. (1) In Theorem 3.6, the condition for Im d∗ and H∗(U) to
be flat is replaced by the condition for the exact sequences of Banach
spaces

(3.6.1) 0→ Zp
jp−→ Up

dp−→ Bp+ → 0 and 0→ Bp
ip−→ Zp

λp−→ Hp(U)→ 0

to be pure.
(2) In Theorem 3.7, the condition for U∗ to be flat is needed to compute

the first spectral sequence from the second filtration

IIE
p, q
1 =

⊕
s+t=q

Torp
(
Us, V t

)
.

Proposition 3.9. Let V be a Banach space. Suppose U is either a finite
dimensional subspace or a closed and finite codimensional subspace of V . Then
U is complemented. In particular, the exact sequence of Banach spaces 0 →
U

i−→ V
p−→W → 0 is split.

Proof. We assume U 6= {0}.
Suppose U is a finite dimensional subspace of V . Notice that U is a closed

subspace and so a Banach subspace of V . Let {u1, u2, . . . , un} be a basis of U
and {u1, u2, . . . , un} be its dual basis. Recall that every ui has a continuous
extension vi to V and vi(uj) = δij , where δij is a Kronecker delta. Consider
P : V → V defined by P (v) =

∑n
i=1 v

i(v)ui. Then it is easy to check that P is
an idempotent morphism, that is, (P ◦P )(v) = P (v) for every v ∈ V , and also
1V = P + (1V − P ). Hence U = Im P and U is complemented.

Similarly, suppose U is a closed and finite codimensional subspace of V .
Then V/U is a finite dimensional Banach space. Recall that V/U is topo-
logically isomorphic with Rm for some positive integer m < ∞. Notice that
V/U is projective by Remark 2.19. Hence, for the surjective morphism π :
V → V/U , there is a morphism λ : V/U → V such that π ◦ λ = 1V/U . Then
V ∼= Im λ⊕Ker π and Ker π ∼= U . This shows U is complemented.
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Now, suppose 0→ U
i−→ V

p−→W → 0 is an exact sequence of Banach spaces.
Since U is complemented, there is a Banach space X such that V ∼= U ⊕ X.
Since V/U and X are topologically isomorphic, X and W are also topologically
isomorphic. In [8], it is shown that algebraic direct sum of closed subspaces of
a Banach space is also a topological direct sum. So V ∼= U ⊕W as Banach
spaces. Hence the sequence is split. �

Proposition 3.10. Let V = {0→ V 0 → V 1 ∂1

−→ V 2 ∂2

−→ · · · } be a complex of
Banach spaces. Suppose every Im ∂n is a finite dimensional subspace of V n+1.
Then, for each n ≥ 0, the sequences of Banach spaces

0→ Im ∂n−1 in−→ Ker ∂n
λn

−−→ Hn(V)→ 0,(3.10.1)

0→ Ker ∂n
jn−→ V n

∂n

−−→ Im ∂n → 0(3.10.2)

are exact and pure.

Proof. Since every Im ∂∗ is a Banach space, the sequences (3.10.1) and (3.10.2)
are exact. Notice that every Im ∂n is a finite dimensional subspace of V n+1

and also of Ker dn+1. Also every Ker dn is a closed and finite codimensional
subspace of V n. So the exact sequences of Banach spaces (3.10.1) and (3.10.2)
are split. Then the dual of these sequences are also split and so pure. The
given sequences are pure by definition. �

Corollary 3.11. For the discrete groups G and K, let the bounded cochains
{B∗(G), d∗} and {B∗(K), ∂∗} satisfy the following conditions: for n ≥ 0,

(1) every image of boundary operator ∂n is closed;
(2) every Im dn is a finite dimensional subspace of Bn+1(G).

Then there is an isomorphism⊕
p+q=n

Hp(B∗(G))⊗̂Hq(B∗(K)) ∼= Hn(B∗(G)⊗̂B∗(K))

of Banach spaces.

Proof. From Theorem 3.6, we set U = B∗(G) and V = B∗(K). Since every
Im dn is a finite dimensional subspace of Bn+1(G), the exact sequences of the
form in the sequence (3.6.1) are pure by Proposition 3.10. By Remark 3.8, the
condition (2) for flatness in Theorem 3.6 is replaced by the given condition (2)
here. Then the rest of the proof is the same as in Theorem 3.6. �

Corollary 3.12. Let the bounded cochains {B∗(G), d∗} and {B∗(K), ∂∗} sat-
isfy the following conditions:

(1) all images of boundary operators d∗ and ∂∗ are closed;
(2) Bs(G) is flat for every s ≥ 0;

(3) Ĥs(G) = 0 and Ĥt(K) = 0 for every s > s0 and t > t0.
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Then there is a spectral sequence with

Ep,q2 =
⊕
s+t=q

Torp
(
Ĥs(G), Ĥt(K)

)
and it converges to Ĥn(B∗(G)⊗̂B∗(K)) for each n = p + q with 0 ≤ n ≤
s0 + t0 − 2.

Proof. Since Ĥs(G) = 0 for every s > s0 and Ĥt(K) = 0 for every t > t0,⊕
s+t=q Torp

(
Ĥs(G), Ĥt(K)

)
= 0 for all s and t such that s > s0 or t > t0.

So, we only consider for each n = p + q with 0 ≤ n ≤ s0 + t0 − 2. Let
m = s0 + t0 − 1. Consider the following sequences:

0→ R→ B1(G)
d1−→ B2(G)→ · · · → Bm(G)

dm−−→ Im dm → 0 and

0→ R→ B1(K)
∂1

−→ B2(K)→ · · · → Bm(K)
∂m

−−→ Im ∂m → 0.(3.12.1)

Then the sequences (3.12.1) are positive and bounded above complexes of Ba-
nach spaces. Set U = B∗(G) and V = B∗(V ). Then the corollary follows from
Theorem 3.7. �

As one of the simplest examples, let G be a discrete amenable group. We
consider {B∗(G), d∗}. Then it is shown that every Bn(G) = R for n ≥ 0 in

[4]. Also, Ĥn(G) = 0 for n > 0 and Ĥ0(G) = R. So, every Im d∗ and Ĥn(G)
are flat. Then, for a discrete group K, consider {B∗(K), ∂∗} such that every
Im ∂n is either closed or finite dimensional. Recall that R⊗̂U = U for a Banach
space U . Hence B∗(G)⊗̂B∗(K) = B∗(K) and so

Hn(B∗(G)⊗̂B∗(K)) ∼= Hn(B∗(K)) = Ĥn(K).

Also, notice that

Ep,q2 =
⊕
s+t=q

Torp
(
Ĥs(G), Ĥt(K)

)
= Torp

(
R, Ĥq(G)

)
= R⊗̂Ĥn(K) = Ĥn(K)

and⊕
p+q=n

Hp(B∗(G))⊗̂Hq(B∗(K)) = R⊗̂Hn(B∗(K)) = Hn(B∗(K)) = Ĥn(K).

References

[1] T. Bühler, On the algebraic foundations of bounded cohomology, Mem. Amer. Math.
Soc. 214 (2011), no. 1006, xxii+97 pp.

[2] J. Cigler, V. Losert, and P. Michor, Banach Modules and Functors on Categories of
Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 46, Marcel Dekker,

Inc., New York, 1979.
[3] L. Frerick and D. Sieg, Exact categories in functional analysis, http://www.researchgate.

net/publication/265264916, 2010.



832 H. PARK

[4] N. Ivanov, Foundation of theory of bounded cohomology, J. Soviet Math. 37 (1987),

1090–1114.

[5] V. I. Kuzminov and I. A. Shvedov, Homological aspects of the theory of Banach com-
plexes, Siberian Math. J. 40 (1999), no. 4, 754–763; translated from Sibirsk. Mat. Zh.

40 (1999), no. 4, 893–904, iii.
[6] S. Mac Lane, Homology, reprint of the 1975 edition, Classics in Mathematics, Springer-

Verlag, Berlin, 1995.

[7] J. McCleary, A User’s Guide to Spectral Sequences, second edition, Cambridge Studies
in Advanced Mathematics, 58, Cambridge University Press, Cambridge, 2001.

[8] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathe-

matics, 183, Springer-Verlag, New York, 1998.
[9] Y. Mitsumatsu, Bounded cohomology and l1-homology of surfaces, Topology 23 (1984),

no. 4, 465–471.

[10] G. A. Noskov, The Hochschild-Serre spectral sequence for bounded cohomology, in Pro-
ceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989), 613–

629, Contemp. Math., 131, Part 1, Amer. Math. Soc., Providence, RI.

[11] J. Rotman, Introduction to Homological Algebra, Academic Press, Inc. 1979.

HeeSook Park

Department of Mathematics Education

Sunchon National University
Sunchon 57922, Korea

Email address: hseapark@scnu.ac.kr


