• Title/Summary/Keyword: sensorless vector control

Search Result 253, Processing Time 0.033 seconds

Sensorless Vector Control System with Compensated Time Constant of Induction Motor Using a MRAS (MRAS를 이용한 유도 전동기의 시정수 보상을 갖는 속도 센서리스 벡터제어)

  • 임태윤;김동희;황돈하;김민회
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.540-543
    • /
    • 1999
  • This paper describes a speed sensorless algorithm for vector control system with compensated stator resistance and rotor time constant of induction motor using a model reference adaptive system(MRAS). The system are composed of two MRAC, one is a rotor speed estimation and a stator resistor identification by back-EMF observer, other is used to identify rotor time constant by magnetizing current observer, so that the estimation can be cover a very low speed range with a robust control. The suggest control strategy and estimation method have been validated by simulation study. In the simulation using Matlab/Simulik, the proposed speed sensorless vector control system are shown to operate very well in spite of variable rotor time constant and load fluctuation.

  • PDF

Speed Sensorless Vector Control of Induction Motors Using a Minimum-order Extended Kalman Filter (최소 차수 확장 칼만 필터를 이용한 속도센서 없는 유도전동기 벡터제어)

  • Lee, Seung-Hyun;Chung, Gyo-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.171-175
    • /
    • 1998
  • This paper proposes a speed sensorless vector control of induction motor using a minimum-order EKF(extended kalman filter). Minimum-order EKF has the advantage of reducing the computational estimation cost because the stator current is not estimated. EKF does not deteriorate the performance of the overall speed control system, even though the measurements are relatively noisy. The estimated rotor speed is used for vector control and overall speed control. Computer simulations of the speed sensorless vector control are carried out to test the usefulness of the minimum-order EKF algorithm.

  • PDF

Sensorless Vector Control for Induction Motor Drive using Modified Tabu Search Algorithm

  • Lee, Yang-Woo;Kim, Dong-Wook;Lee, Su-Myoung;Park, Kyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.377-381
    • /
    • 2003
  • The design of speed controller for induction motor using tabu search is studied. The proposed sensorless vector control for Induction Motor is composed of two parts. The first part is for optimizing the initial parameters of input-output. The second part is for real time changing parameters of input-output using tabu search. Proposed tabu search is improved by neighbor solution creation using Gaussian random distribution. In order to show the usefulness of the proposed method, we apply the proposed controller to the sensorless speed control of an actual AC induction Motor System. The performance of this approach is verified through simulation.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

Sensorless control of the Next Generation High Speed Drive System in low speed region (차세대 고속전철 저속영역에서의 센서리스 제어)

  • Jin, Kang-Hwan;Suh, Yong-Hun;Lee, Sang-Hyun;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.82-87
    • /
    • 2011
  • In this paper, a sensorless speed control system is designed for the next generation high speed railway at zero and low speed region. The applied vector control scheme is a maximum torque per ampere(MTPA) method to utilize reluctance torque of IPMSM. The designed sensorless control scheme is a rotating high frequency voltage signal injection method. To verify the designed system, a simulator for the vector controller and sensorless controller is implemented using Matlab/simulink.

Sensorless Vector Control of Induction Motor Using Fuzzy PI Controller (퍼지 PI제어기를 이용한 유도전동기 속도 센서리스 벡터제어)

  • 남상현;이재환;김대균;김길동;이승환;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.390-393
    • /
    • 1999
  • For high performance ac drives, the speed sensorless vector control and a speed control algorithm base on the Fuzzy PI controller have received increasing attention. A Fuzzy PI controller is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state response.

  • PDF

Sensorless Vector Controlled Induction Machine in Field Weakening Region: Comparing MRAS and ANN-Based Speed Estimators

  • Moulahoum, Samir;Touhami, Omar
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.241-248
    • /
    • 2007
  • The accuracy of all the schemes that belong to vector controlled induction machine drives is strongly affected by parameter variations. The aim of this paper is to examine iron losses and magnetic saturation effect in sensorless vector control of induction machines. At first, an approach to induction machine modelling and vector control scheme, which account for both iron loss and saturation, is presented. Then, a model reference adaptive system (MRAS) based speed estimator is developed. The speed estimation is modified in such a way that iron losses and the variation in the saturation level are compensated. Thus by substituting an artificial neural network flux estimator into the MRAS speed estimator. Experimental results are presented to verify the effectiveness of the proposed approach.

Speed Sensorless Vector Control of Induction Machine Using an Improves Speed Estimation Algorithm (개선된 속도 추정 알고리즘을 이용한 유도전동기의 속도 센서리스 벡터 제어)

  • 정인화;신명호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.36-44
    • /
    • 1997
  • For high performance ac drives, the speed sensorless vector control and the stator flux orientation concept have received increasing attention. This paper describes a speed and flux sensorless vector-controlled induction machine(IM) drive based on the stator flux-oriented control. To improve the accuracy and operating range, the control system employs the previously presented speed and flux estimation methods, and then we present a developed method of estimating the speed of IM. In the proposed method all differential and integral terms have been eliminated by giving a very fast, low-cost, effective and practical alternative to the methods currently available. The effectiveness of the proposed method is verified by simulations and experimental results.

  • PDF

The Sensorless Vector Control of Induction Motor with Speed Estimator using MRAC (MRAC를 적용한 속도추정기를 가지는 유도전동기 센서리스 벡터제어)

  • 최승현;이성근;김윤식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.150-156
    • /
    • 2001
  • This paper proposed a speed estimator using MRAC(Model Reference Adaptive Control) for sensorless vector control. It is robust for parameter variation or disturbance and the estimated speed is used as feedback in a vector control system. Experiment is presented to confirm the theoretical analysis.

  • PDF

Stability improvement of induction motor vector control system without speed sensor

  • Tsuji, Mineo;Li, Hanqiang;Izumi, Katsuhiro;Yamada, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.207-210
    • /
    • 1995
  • In this paper, two representative schemes for vector control of induction motor without speed sensor are studied. First, the two sensorless systems which are implemented by voltage and current source are presented with new ideas and interpretations. Then a linear model around an operating point is proposed. Finally, the stability improvement of these systems are studied and evaluated by computing the trajectories of poles and zeros.

  • PDF