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Sensorless Vector Controlled Induction Machine in Field Weakening
Region: Comparing MRAS and ANN-Based Speed Estimators

Samir Moulahoum* and Omar Touhami**

Abstract — The accuracy of all the schemes that belong to vector controlled induction machine drives
is strongly affected by parameter variations. The aim of this paper is to examine iron losses and
magnetic saturation effect in sensorless vector control of induction machines. At first, an approach to
induction machine modelling and vector control scheme, which account for both iron loss and
saturation, is presented. Then, a model reference adaptive system (MRAS) based speed estimator is
developed. The speed estimation is modified in such a way that iron losses and the variation in the
saturation level are compensated, Thus by substituting an artificial neural network flux estimator into
the MRAS speed estimator. Experimental results are presented to verify the effectiveness of the

proposed approach.
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1. Introduction

The conventional linear modelling of induction machines
fails to deliver accurate results and makes performance
predictions almost impossible in a number of operating
conditions [1], the saturation effect has been suspected as
the prime cause of detuning. Several modeling techniques
have been proposed in the literature, based mainly on
modifications of the equivalent circuit and the d-q model,
including mutual dependence on the flux or magnetizing
currents. The ‘cross saturation’ model has become the
standard method of accounting for these effects [2].

Another area of improvement has been the incorporation
of iron loss effect in induction modeling. Nowadays, more
induction motors are fed by PWM inverters. The use of
static converter for electrical drives leads to iron loss
increase [3]. Different models have been developed; the
approach used, in general, to include iron loss in the
induction machine model is connecting Rg. in paraliel with
the magnetizing branch [3-4]. However, it was shown in
[5] that by appropriate modification, an equivalent iron loss
resistance can be placed in series to the mutual inductance.

The vector control drive requires the induction motor
speed as a feedback signal; a rotational encoder is used to
obtain this speed, which degrades the system reliability,
especially in hostile environments. Sensorless vector

control is proposed to cope with the speed sensing problem.
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Various approaches of sensorless vector control have been
presented in the literature.

In this paper, first of all, a model, based on a nonlinear
circuit of the machine, that simultaneously includes both
magnetic saturation and iron loss is presented. A vector
control modified scheme is used that is insensitive to the
saturation effect as well as to iron losses.

Then, we propose a MRAS speed estimation which is
based on an e.n.f measurement instead of stator voltage
measurement. A modified integration method is used to
avoid the offset problem caused by open loop integration in
the reference model [6]. In the flux weakening operation,
the saturation level changes; however, a MRAS speed
estimator uses a constant value of magnetizing inductance,
which leads to error between the real speed and the
estimated speed. Levi et al [7] propose a modified speed
estimator that takes into account and compensates
saturation effect. In this paper, we propose, with the same
goal but differently, an artificial neural network that is used
to modify the estimated rotor flux. The ANN flux estimator
is substituted into the MRAS speed estimator to improve
the performance of the rotor speed estimation, particularly,
in the flux weakening region. The estimated speed replaces
the feedback signal for vector control and speed control.
The ANN is trained on line with the backpropagation
training method. In order to overcome the slow
convergence of the training method, the modification of
rotor flux estimation presented in [8] is exploited.

The performance of the proposed estimators are
compared and discussed for nominal operation. Its limits
are also addressed in a low speed range. The improvements
achieved at flux weakening operation with the ANN- based
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speed estimator are outlined and discussed.

2. Vector Controlled Induction Machine
2.1 Induction Machine Modeling

The treatment of saturation has been considered in detail
by a number of authors, and numerous methods with a
varying level of complexity are available. In this paper, the
saturation effect in induction machines is associated with
the magnetizing flux. Including saturation in d-q axis
model consists in expressing the flux linkages and their
time derivatives as a function of currents. This dependence
may be determined from a no-load test carried out on the
machine. However, saturation and iron losses occur
simultaneously. Hence, in the proposed model, the
principles of magnetizing flux saturation modelling and
derivation procedure remain the same as for an induction
machine without iron loss. However, the overall
complexity of the model increases when the iron losses
branch is added (Fig.1). As consequence the number of
differential equations increases. Details of induction
machine modelling process by considering iron loss and
saturation can be found in [4]. The model can be formed in
various different ways, depending on the set of state-space
variables. The model selected is the one with current
components as state-space variables. It may be given in a
matrix form as:
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Where My and M, are, respectively, the d and q mutual
inductances. My, is the term that handles the “saturation
cross effect”. The magnetizing curve and equivalent iron

loss resistance have to be known, these are determined by a
standard no-load test on an induction machine.
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Fig. 1. The equivalent circuit of an induction machine
considering iron losses and magnetic saturation

2.2 Vector Controller Scheme

Neglecting iron loss and saturation effect in vector
controller causes a coupling between flux and torque and
hence the torque in the machine will be lower than the
reference one. Therefore, modifying the basic vector
control scheme may be necessary. Derivation of the
modified vector controller is obtained by a modification of
Fig. 1. The non linear function L (® ) is used to include

the saturation effect in the controller model. Details of the
modified vector controller that takes into account magnetic
saturation and iron loss can be found in [9-10].

The complete modified vector controller that is based on
stator currents and rotor speed measurements, which takes
into account saturation and iron losses, can be given by the
following system:
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The bloc diagram of this controller is shown in Fig. 2.
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Fig. 2. Modified vector controller of an induction machine with iron losses and saturation compensation

3. Sensorless Drive Scheme

As shown in [10], the proposed vector controller gives
high torque and speed control performances and interesting
dynamic responses. However, this type of controller
requires a mechanical sensor which needs extra mounting
arrangements on the shaft of the motor, thus reducing its
reliability as well as increasing the overall cost of the drive
and constitutes a fragile part of the plant. To eliminate the
use of this sensor, several algorithms have been proposed
to estimate speed. This section deals with a model
reference adaptive system (MRAS) speed estimator and an
artificial neural network (ANN)-based MRAS speed
estimator. Performances of sensorless vector control
associated to these speed estimators are analyzed. The
effect of saturation and iron losses in flux weakening
operation is examined and compensated.

The major problem in the practical implementation of the
speed estimator is the presence of an offset in the pure
integration of flux estimation. This offset, be it as little as it
is, affects the accuracy of the flux estimation and leads to
the loss of system control if not handled. Several methods
have been used to solve this problem, some authors
substitute the integration by a low-pass filtering [7-11],
others use an adaptive filter {8]. The method used here to
eliminate the offset is proposed in [6]. In the machine used
in the experimental setup, extra small holes were designed
along the stator core. They contain two orthogonal
windings which give images of o and  e.m.f. The two
signals are measured, their amplitudes are adjusted and the
offsets are eliminated from the signals using an on line
offset tracking scheme. In steady state operation, o and f
stator flux are sinusoidal but their mean value is not null
depending on the offset of their corresponding e.m.f,
knowing that when one of the two flux signals is maximum

or minimum the other must be null. Hence, at each extreme,
we eliminate the corresponding offset of the other flux
variable. Fig. 3 shows the experimental o and B stator flux
when offsets are auto-tuned.
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Fig. 3. The stator flux estimation with the offset
compensation algorithm
(a) The stator flux while offsets are not tuned
(b) The stator flux after compensated offsets
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3.1 MRAS Speed Estimator

In the MRAS speed estimator, the reference model is
based on the well-known stator equations written in the
stationary reference frame (voltage model indexed by ‘1),
while the adjustable model is derived from the rotor
equations in the same reference frame (current model
indexed by ‘2”) [12]. In the MRAS exposed in this paper,
the measured EM.F is used instead of the E.M.F
reconstituted from stator voltage and resistive voltage drop.
So, this scheme does not need a stator resistance value; as a
consequence, variations of this resistance have essentially
no impact on the speed estimation.

By introducing the E.M.Fs, the classical MRAS speed
estimator is described by:

do L dl
(a,p)rl m (o,B)s
— =0E -oL 3
dt L, ( (oup)s Todt J @
do 1 L
(afyr2 _ .
—a - ue —T—r)q’(a,s)rz + —Trr“ Taps 4
€= d)ar2 (DBrl - q)otrl (DBr2 (5)

The error € is brought to zero by a PI controller. The
output of this controller is the estimated speed. The MRAS
estimator is shown in Fig. 4. The offset voltage
compensation is introduced in the speed estimator but not
shown in the figure.

3.2 ANN speed estimator

The most commonly used neural networks are
feedforward multilayer networks where no information is
fed back during application. Most often, the backpropagation
training is used to adjust the neural network weights, since
the training algorithm takes a long time to converge. Two
layered neural networks are, therefore, preferred. This type
of neural network may learn on-line, so, the off-line
training is not necessary. To use artificial neural network
(ANN) in speed estimation, the voltage and current models
in the stationary reference frame are necessary. The voltage
model is used as a reference model, and the current model
is considered as an ANN adjustable model. The output of
the ANN is defined as the estimated speed. The flux error
is backpropagated to the ANN and the weights are adjusted
on line to reduce error. Finally, the output of the ANN
follows the real speed. The adjustable model can be
transformed into the followings numerical form using the
backward difference method:
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Fig. 4. MRAS-based Speed estimator
Where: w = [1 _LJ w, =T.o, ws = T.L,
T, T,

This model is a simple two-layer neural network where
wy, W, and w; represent the weights. The inputs [k-1] can
be obtained from the outputs [k] by a simple time delay z™".
However to avoid instability, the rotor flux input signal are
those coming from the output of the voltage model and not
from the ANN model [8]. So, the delayed outputs of the
voltage model are used as inputs to the neural network.
This modification implies a faster and more stable
convergence of the estimator.

The weights are adjusted so as to minimize a square
error energy function and the new weight w; is given by:

wi[k] = wi[k — 1]+ nAW,; [k] + oAw, [k — 1] (7)

Where 1 is the training coefficient and o determines the
effect of the past weight changes on the current weight.
The dynamic convergence of the ANN depends on the
choice of 1 and a. The higher learning rate n causes bigger
ripples in estimated speed but achieves a fast response of
estimator. However, the dynamic behavior in the smaller
learning rate n is lower. We choose a learning coefficient
that is as large as possible without leading to more
oscillations. This offers the most rapid learning and hence
the estimated speed tracks the real speed in good
agreement. Therefore, the speed can be calculated by
dividing w, by the sampling period Ts [13]. The bloc
diagram of the ANN speed estimator is shown in Fig. 5.

4. Experimental Results

The vector control and the speed estimation have been
implemented in C language with the use DS1104 DSP
Board. For control superpose, the induction machine is
modeled by a set of equations (1) related to Fig. 1 and a
modified vector controller is used to compensate saturation
and iron loss effects (Fig.2) [9-10]. The estimated speed
has been feedback and used both for the speed regulation
and the orientation angle computation. While the actual
speed is used only to compute the speed error (Fig. 6 and
Fig. 7).
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Fig. 6. Sensorless vector control block diagram

Fig. 7. Experimental setup

Fig.8 presents the experimental results obtained for
speed inverting from -480 rpm to 480 rpm. Estimated
speed, actual speed, reference speed and error in speed are
shown in this figure. It can be seen that the estimated speed

tracks the actual speed very well and the speed reversal is
accomplished in less than 0.5s and the performance of the
sensorless control is very satisfactory. Furthermore, low
speed operation is performed (Fig. 9 and Fig. 10). The
speed estimation exhibits a few oscillations which may
lead to halting of the system if we decrease more the speed.
The speed estimation can not be improved regarding to the
difficult of e.m.f measurement in low speed rang, the noise
has a negative influence in this operation domain, it affects
the fundamental e.m.f signal. However, the four quadrant
operation is still possible, the speed response is very quick
and it converges to the reference value (Fig. 11). Hence,
the sensorless vector control, where low speed operation is
required, is a very sensitive task.

The load application is then verified (Fig.12), the drive
operates at 860 rpm reference speed and a constant torque
of 60% of rated torque is applied at t=1s. It is clear that the
drive response occurs immediately when torque step is
given. The estimated speed tracks the actual speed while in
transients. However, a little static speed error appears with
the ANN-based MRAS speed estimator. These results
demonstrate also that classical MRAS and ANN estimators,
in nominal operation, have globally the same behavior.

The speed estimator model uses electrical parameters of
the induction motor, Hence, incorrect parameters in speed
estimator lead to an estimate speed error. Fig. 13 shows the
experimental results of the sensorless vector control drive
when speed is increased via a ramp from 860 to 1720 rpm.
The value of the mutual inductance used in the MRAS and
the ANN speed estimators is set to the constant nominal
value. The comparison between MRAS and ANN-based
estimators leads to the positive appreciation of the latter.
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Fig. 8. Speed reversal from -480 to 480 rpm
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Fig. 10. Low speed operation by using ANN speed estimator
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Fig. 11. Speed reversal from -95 to 95 rpm
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Fig. 12. Load application
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Fig.13. High speed operation with flux weakening

With MRAS-based speed estimator the estimated speed
is lower than the actual speed in the weakening region and
a steady state static error of 8 rpm occurs due to the
variation of the mutual inductance that is neglected in
speed estimator. The reason is that the stator flux estimated
by the current model is different from that estimated from
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voltage model because this last contains the L,/L,, ratio that
does not change (L, and L,, vary in the same order).
However, the adjustable model needs 1/T, ratio that is
greatly affected by the saturation effect.

With the ANN-based speed estimator, the estimated
speed coincides with the actual speed exactly and the main
speed error is essentially eliminated. The input rotor flux of
the adjustable model is the output rotor flux of the
reference model that is not affected by saturation effect. In
addition, the adjustable model contains the weights w;, w,
and w; that are adjusted on line and at each sampling
period. So, in the ANN-based MRAS speed estimator, the
parameter variation effect is eliminated. And the speed
control performance is improved by substituting the MRAS
by an ANN speed estimator in the flux weakening
operation.

5. Conclusion

Modified flux integration method, based on e.m.f
measurement, is integrated in speed estimation. MRAS-
based and ANN-based speed estimation algorithms of an
induction motor were proposed. From the experimental
results, it is shown that the proposed algorithms estimate
the speed exactly in nominal speed and the dynamic
performances are very satisfactory. But in a low speed
range, oscillations of the speed occurred; the oscillations
are due to the difficulty to measure a no-noise e.m.f. These
estimators also have a robust speed estimation performance
even with load variation or variable-speed operation.
Finally, the performance of MRAS speed estimation in the
field weakening region was deteriorated due to the
saturation level variation. However, in the ANN speed
estimation, the estimated speed follows the actual speed
and the error included in the estimated speed was removed.

Appendix (Induction machine data)
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Fig.al: Magnetizing flux versus magnetizing current
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