• Title/Summary/Keyword: semiprime ideal

Search Result 47, Processing Time 0.021 seconds

NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS

  • Zhang, Wei;Xu, Xiaowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1127-1133
    • /
    • 2014
  • Let S be a nonempty subset of a ring R. A map $f:R{\rightarrow}R$ is called strong commutativity preserving on S if [f(x), f(y)] = [x, y] for all $x,y{\in}S$, where the symbol [x, y] denotes xy - yx. Bell and Daif proved that if a derivation D of a semiprime ring R is strong commutativity preserving on a nonzero right ideal ${\rho}$ of R, then ${\rho}{\subseteq}Z$, the center of R. Also they proved that if an endomorphism T of a semiprime ring R is strong commutativity preserving on a nonzero two-sided ideal I of R and not identity on the ideal $I{\cup}T^{-1}(I)$, then R contains a nonzero central ideal. This short note shows that the conclusions of Bell and Daif are also true without the additivity of the derivation D and the endomorphism T.

ON QUASI-RIGID IDEALS AND RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.385-399
    • /
    • 2010
  • Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.347-375
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R, and let $D:R{\rightarrow}R$ be a Jordan derivation. If [D(x), x]D(x) = 0 for all $x{\in}U$, then D(x)[D(x), x]y - yD(x)[D(x), x] = 0 for all $x,y{\in}U$. And also, if D(x)[D(x), x] = 0 for all $x{\in}U$, then [D(x), x]D(x)y - y[D(x), x]D(x) = 0 for all $x,y{\in}U$. And we shall give their applications in Banach algebras.

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.

A NOTE ON MULTIPLICATIVE (GENERALIZED)-DERIVATION IN SEMIPRIME RINGS

  • REHMAN, NADEEM UR;HONGAN, MOTOSHI
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.81-92
    • /
    • 2018
  • In this article we study two Multiplicative (generalized)- derivations ${\mathcal{G}}$ and ${\mathcal{H}}$ that satisfying certain conditions in semiprime rings and tried to find out some information about the associated maps. Moreover, an example is given to demonstrate that the semiprimeness imposed on the hypothesis of the various results is essential.

ON PRIME AND SEMIPRIME RINGS WITH PERMUTING 3-DERIVATIONS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.789-794
    • /
    • 2007
  • Let R be a 3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-derivation ${\Delta}:R{\times}R{\times}R{\rightarrow}R$ such that the trace is centralizing on I. Then the trace of ${\Delta}$ is commuting on I. In particular, if R is a 3!-torsion free prime ring and ${\Delta}$ is nonzero under the same condition, then R is commutative.

GENERALIZED DERIVATIONS ON SEMIPRIME RINGS

  • De Filippis, Vincenzo;Huang, Shuliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1253-1259
    • /
    • 2011
  • Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a derivation d such that c for all x, $y{\in}I$. Then either R is commutative or n = 1, d = 0 and F is the identity map on R. Moreover in case R is a semiprime ring and $(F([x,\;y]))^n=[x,\;y]$ for all x, $y{\in}R$, then either R is commutative or n = 1, $d(R){\subseteq}Z(R)$, R contains a non-zero central ideal and for all $x{\in}R$.