A NOTE ON MULTIPLICATIVE (GENERALIZED)-DERIVATION IN SEMIPRIME RINGS

NADEEM UR REHMAN* AND MOTOSHI HONGAN

Abstract

In this article we study two Multiplicative (generalized)- derivations \mathcal{G} and \mathcal{H} that satisfying certain conditions in semiprime rings and tried to find out some information about the associated maps. Moreover, an example is given to demonstrate that the semiprimeness imposed on the hypothesis of the various results is essential.

AMS Mathematics Subject Classification : 16W25, 16N60, 16 U80. Key words and phrases : Semiprime ring, Multiplicative (generalized)derivations, left ideal.

1. Introduction

Let \mathfrak{R} be an associative ring. The center of \mathfrak{R} is denoted by $Z(\Re)$. An additive map δ from $\mathfrak{R} \rightarrow \mathfrak{R}$ is called a derivation of \mathfrak{R} if $\delta\left(x_{1} x_{2}\right)=\delta\left(x_{1}\right) x_{2}+x_{1} \delta\left(x_{2}\right)$ holds $\forall x_{1}, x_{2} \in \mathfrak{R}$. Let $\mathfrak{F}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a map associated with another map $\delta: R \rightarrow R$ so that $\mathfrak{F}\left(x_{1} x_{2}\right)=\mathfrak{F}\left(x_{1}\right) x_{2}+x_{1} \delta\left(x_{2}\right)$ holds $\forall x_{1}, x_{2} \in \mathfrak{R}$. If \mathfrak{F} is additive and δ is a derivation of \mathfrak{R}, then \mathfrak{F} is said to be a generalized derivation of \Re that was introduced by Brešar [2]. In [7], Hvala gave the algebraic study of generalized derivations of prime rings. We note that if \mathfrak{R} has the property that $\mathfrak{R} x_{1}=(0)$ implies $x_{1}=0$ and $\psi: \mathfrak{R} \rightarrow \mathfrak{R}$ is any function, and $\chi: \mathfrak{R} \rightarrow \mathfrak{R}$ is any additive map such that $\chi\left(x_{1} x_{2}\right)=\psi\left(x_{1}\right) x_{2}+x_{1} \psi\left(x_{2}\right) \forall x_{1}, x_{2} \in \mathfrak{R}$, then χ is uniquely determined by ψ and moreover ψ must be a derivation by ([2, Remark 1]). Obviously, every derivation is a generalized derivation of \mathfrak{R}. Following [5], a multiplicative derivation of \mathfrak{R} is a map $\mathcal{G}: \mathfrak{R} \rightarrow \mathfrak{R}$ which satisfies $\mathcal{G}\left(x_{1} x_{2}\right)=\mathcal{G}\left(x_{1}\right) x_{2}+x_{1} \mathcal{G}\left(x_{2}\right) \forall x_{1}, x_{2} \in \mathfrak{R}$. Of course these maps are not additive. We consider $\mathbb{R}=\mathbb{C}[0,1]$, the ring of all continuous (real or complex

[^0]valued) functions and define a map $\mathfrak{g}: \mathfrak{R} \rightarrow \mathfrak{R}$ as follows:
\[

\mathcal{G}(\mathfrak{g})\left(x_{1}\right)=\left\{$$
\begin{array}{cc}
\mathfrak{g}\left(x_{1}\right) \log \left|\mathfrak{f}\left(x_{1}\right)\right|, & \text { when } \mathfrak{f}\left(x_{1}\right) \neq 0 \\
0, & \text { otherwise }
\end{array}
$$\right.
\]

Then, it is easy to verify that \mathcal{G} satisfies $\mathcal{G}(\mathfrak{f g})=\mathcal{G}(\mathfrak{f}) \mathrm{g}+\mathfrak{f} \mathcal{G}(\mathfrak{g}) \forall \mathfrak{f}, \mathfrak{g} \in \mathbb{C}[0,1]$, but \mathcal{G} is not additive. Daif and Tammam's [6] extended multiplicative generalized derivations as follows: a $\operatorname{map} \mathcal{G}: \Re \rightarrow \mathfrak{R}$ is called a multiplicative generalized derivation if there exists a derivation \mathfrak{g} such that $\mathcal{G}\left(x_{1} x_{2}\right)=\mathcal{G}\left(x_{1}\right) x_{2}+x_{1} \mathfrak{g}\left(x_{2}\right) \forall$ $x_{1}, x_{2} \in \mathfrak{R}$. The notion of multiplicative (generalized)-derivation introduced by Dhara and Ali [3] as follows: a map $\mathcal{G}: \mathfrak{R} \rightarrow \mathfrak{R}$ (not necessarily additive) is said to be a multiplicative (generalized)-derivation if $\mathcal{G}\left(x_{1} x_{2}\right)=\mathcal{G}\left(x_{1}\right) x_{2}+x_{1} \mathfrak{g}\left(x_{2}\right)$ holds $\forall x_{1}, x_{2} \in \mathfrak{R}$, where \mathfrak{g} is any map (not necessarily a derivation or an additive map). Hence, the concept of multiplicative (generalized)-derivation covers the concept of multiplicative derivation. Moreover, if $\mathfrak{g}=0$ the multiplicative (generalized)-derivation covers the notion of multiplicative centralizers (not necessarily additive). One can find an example of multiplicative generalized derivation, which is neither a derivation nor generalized derivation.

Example 1.1. Consider t

$$
\mathfrak{R}=\left\{\left.\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\} .
$$

Define $\mathcal{G}, \mathfrak{g}: R \rightarrow R$ as
$\mathcal{G}\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & a^{2} c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $\mathfrak{g}\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & a^{2} & c b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Then it is straightforward to verify that \mathcal{G} is not additive map in \mathfrak{R}, Hence \mathcal{G} is a multiplicative (generalized)- derivation associated with the mapping \mathfrak{g} on \mathfrak{R}, but \mathcal{G} is not a generalized derivation of \mathfrak{R}.

Motivated by the results obtained by Tiwari et.al. [9] in the present paper we study semiprime ring admitting two multiplicative (generalized)-derivations \mathcal{G}, \mathcal{H} associated with the mappings $\mathfrak{g}, \mathfrak{h}$ respectively and φ be a any mapping satisfying certain identities on a asubset of $(i) \mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{1} x_{2} \in Z(\mathfrak{R})$ (ii) $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R})($ iii $) \mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R})$ (iv) $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm\left[x_{1}, \varphi\left(x_{2}\right)\right] \in Z(\mathfrak{R})(v) \mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm$ $\left[\varphi\left(x_{1}\right), x_{2}\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, where \mathfrak{I} is a nonzero ideal.

2. Preliminaries

We shall use without explicit mention the following basic identities:

$$
\left[x_{1} x_{2}, x_{3}\right]=\left[x_{1}, x_{3}\right] x_{2}+x_{1}\left[x_{2}, x_{3}\right] \text { and }\left[x_{1}, x_{3} x_{2}\right]=\left[x_{1}, x_{3}\right] x_{2}+x_{3}\left[x_{1}, x_{2}\right] .
$$

we begin with the following known lemmas:

Lemma 2.1. [1, Theorem 3] Let \mathfrak{R} be a semiprime ring and \mathfrak{I} a nonzero left ideal of \mathfrak{R}. If \mathfrak{R} admits a derivation \mathfrak{g} which is nonzero on \mathfrak{I} and centralizing on \mathfrak{I}, then \mathfrak{R} contains a nonzero central ideal.

Lemma 2.2. [4, Fact-4] Let \mathfrak{R} be a semiprime ring, \mathfrak{g} a nonzero derivation of \mathfrak{R} such that $x_{1}\left[\left[\mathfrak{g}\left(x_{1}\right), x_{1}\right], x_{1}\right]=0 \forall x_{1} \in \mathfrak{R}$. Then \mathfrak{g} maps \mathfrak{R} into its center.

3. Main results

Theorem 3.1. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R}. If $\mathfrak{\Re}$ admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{1} x_{2} \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $\mathfrak{T}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0)$ and $\Im\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]=(0) \forall x_{3} \in \mathfrak{I}$.

Proof. We have

$$
\begin{equation*}
\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)-x_{1} x_{2} \in Z(\mathfrak{\Re}) \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{1}
\end{equation*}
$$

Replace x_{2} by $x_{2} x_{3}$ in (1)and use (1), to get

$$
\begin{equation*}
\left[x_{1} x_{2} \mathfrak{g}\left(x_{3}\right)+\mathcal{H}\left(x_{1}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{2}
\end{equation*}
$$

Replacing x_{1} by $x_{1} x_{3}$ in (2), we have

$$
\begin{equation*}
\left[x_{1} x_{3} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right) x_{3} x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{1} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{3}
\end{equation*}
$$

Putting $x_{2}=x_{3} x_{2}$ in (2) yields that

$$
\begin{equation*}
\left[x_{1} x_{3} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right) x_{3} x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{4}
\end{equation*}
$$

Comparing (4) and (3), we get

$$
\begin{equation*}
\left[x_{1} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{5}
\end{equation*}
$$

In (5), we replace x_{1} with $\mathfrak{h}\left(x_{3}\right) x_{1}$ and from (5) we find that

$$
\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right)=0
$$

$\forall x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. This implies that $\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{2}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \forall$ $x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. Thus, $\left(\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]\right)^{3}=(0) \forall x_{3} \in \mathfrak{I}$. Since \mathfrak{R} is semiprime, it contains no nilpotent left ideal, implying $\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0) \forall x_{3} \in \mathfrak{I}$, as desired.

Again from from equation (2) and the condition $\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0)$, we have

$$
\begin{equation*}
\left[x_{1} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right), x_{3}\right] x_{2} \mathfrak{h}\left(x_{3}\right)+\mathcal{H}\left(x_{1}\right)\left[x_{2}, x_{3}\right] \mathfrak{h}\left(x_{3}\right)=0 \tag{6}
\end{equation*}
$$

Replacing x_{2} by $x_{2} x_{3}$, we get

$$
\begin{equation*}
\left[x_{1} x_{2} x_{3} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right), x_{3}\right] x_{2} x_{3} \mathfrak{h}\left(x_{3}\right)+\mathcal{H}\left(x_{1}\right)\left[x_{2}, x_{3}\right] x_{3} \mathfrak{h}\left(x_{3}\right)=0 \tag{7}
\end{equation*}
$$

Right multiplying (6) by x_{3} and subtraction from (7) and using the fact that $\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0)$, we find that

$$
\begin{equation*}
\left[x_{1} x_{2}, x_{3}\right]\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]+x_{1} x_{2}\left[\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right], x_{3}\right]=0 \tag{8}
\end{equation*}
$$

Now, replacing x_{1} by $t x_{1}$ in (8) and using (8), we obtain $\left[t, x_{3}\right] x_{1} x_{2}\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]=0$ $\forall x_{1}, x_{2}, x_{3}, t \in \mathfrak{I}$ and again replace t by $\mathfrak{g}\left(x_{3}\right) t$, to get

$$
\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right] t x_{1} x_{2}\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]=0 \forall x_{1}, x_{2}, x_{3}, t \in \mathfrak{I} .
$$

Replacing x_{1} by $\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]$ we get

$$
\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right] t\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right] x_{2}\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]=0 \forall x_{2}, x_{1}, t \in \mathfrak{I} .
$$

Thus, $\left(\mathfrak{I}\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]\right)^{3}=(0) \forall x_{3} \in \mathfrak{I}$. Since \mathfrak{R} is semiprime, it contains no nilpotent left ideal, we conclude that $\mathfrak{I}\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]=(0) \forall x_{3} \in \mathfrak{I}$.

We may obtain the same conclusion by the same argument, when $\mathcal{G}\left(x_{1} x_{2}\right)+$ $\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)+x_{1} x_{2} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$.

Using a similar approach as above we can prove the following:
Theorem 3.2. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R}. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)-\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{1} x_{2} \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0)$ and $\mathfrak{I}\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]=(0) \forall x_{3} \in \mathfrak{I}$.

Corollary 3.3. Let \mathfrak{R} be a semiprime ring. If \mathfrak{R} admits a multiplicative (generalized) - derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)-\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{1} x_{2} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{R}$, then \mathfrak{h} is a commuting map on \mathfrak{R} and \mathfrak{g} is a commuting map on \mathfrak{R}.

In view of Theorem 3.1 and Lemma 2.1, we immediately get the following corollary.

Corollary 3.4. Let \Re be a semiprime ring and \Re admitting two multiplicative (generalized)- derivations \mathcal{G} and \mathcal{H} associated with the derivations \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R}. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{1} x_{2} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{R}$, then $\mathfrak{h}=0$ and $\mathfrak{g}=0$ or \mathfrak{R} contains a nonzero central ideal.

Theorem 3.5. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R}. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{2} x_{1} \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0) \forall x_{3} \in \mathfrak{I}$.

Proof. We have

$$
\begin{equation*}
\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)+x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{9}
\end{equation*}
$$

Replacing x_{2} with $x_{2} x_{3}$ in (9), we get

$$
\begin{align*}
& \left\{\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)+x_{2} x_{1}\right\} x_{3}+x_{1} x_{2} \mathfrak{g}\left(x_{3}\right) \tag{10}\\
& +\mathcal{H}\left(x_{1}\right) x_{2} \mathfrak{h}\left(x_{3}\right)+x_{2}\left[x_{3}, x_{1}\right] \in Z(\mathfrak{R})
\end{align*}
$$

$\forall x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. Commuting both sides with x_{3}, we obtain

$$
\begin{equation*}
\left[x_{1} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{2}\left[x_{3}, x_{1}\right], x_{3}\right]=0 . \tag{11}
\end{equation*}
$$

Putting $x_{1}=x_{1} x_{3}$ in the above relation we find that

$$
\begin{align*}
& {\left[x_{1} x_{3} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\left(\mathcal{H}\left(x_{1}\right) x_{3}+x_{1} \mathfrak{h}\left(x_{3}\right)\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]} \tag{12}\\
& +\left[x_{2}\left[x_{3}, x_{1} x_{3}\right], x_{3}\right]=0 .
\end{align*}
$$

Putting $x_{2}=x_{3} x_{2}$ in (11), we get

$$
\begin{equation*}
\left[x_{1} x_{3} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right) x_{3} x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+x_{3}\left[x_{2}\left[x_{3}, x_{1}\right], x_{3}\right]=0 . \tag{13}
\end{equation*}
$$

Subtracting (13) from (12), we have

$$
\begin{equation*}
\left[x_{1} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[\left[x_{2}\left[x_{3}, x_{1}\right], x_{3}\right], x_{3}\right]=0 \tag{14}
\end{equation*}
$$

Putting $x_{1}=x_{1} x_{3}$, the above relation gives that

$$
\begin{equation*}
\left[\left[x_{2}\left[x_{3}, x_{1}\right], x_{3}\right], x_{3}\right] x_{3}+\left[x_{1} x_{3} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{15}
\end{equation*}
$$

Right multiplying (14) by x_{3} and then subtracting it from (15), we get

$$
\begin{equation*}
\left[x_{1}\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right], x_{3}\right]=0 \tag{16}
\end{equation*}
$$

$\forall x_{1}, x_{2}, x_{3} \in I$. Now we substitute $\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right) x_{1}$ for x_{1} in (16) and get

$$
\begin{align*}
0= & {\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right) x_{1}\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right], x_{3}\right] } \\
= & \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right)\left[x_{1}\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right], x_{3}\right] \tag{17}\\
& +\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1}\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right] .
\end{align*}
$$

Using (16), it reduces to $\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1}\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \quad \forall$ $x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. Since \mathfrak{I} is a left ideal, it follows that
and hence $x_{1}\left[\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0$ that is,

$$
\begin{equation*}
x_{1}\left(\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right) x_{3}-x_{3} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right)\right)=0 . \tag{18}
\end{equation*}
$$

Now we put $x_{2}=x_{2} \mathfrak{h}\left(x_{3}\right) x_{1}$, where $x_{1} \in \mathfrak{I}$, and then obtain

$$
x_{1}\left(\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right) x_{1} \mathfrak{h}\left(x_{3}\right) x_{3}-x_{3} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right) x_{1} \mathfrak{h}\left(x_{3}\right)\right)=0 .
$$

By (18), this can be written as

$$
x_{1}\left(\mathfrak{h}\left(x_{3}\right) x_{2} x_{3} \mathfrak{h}\left(x_{3}\right) x_{1} \mathfrak{h}\left(x_{3}\right)-\mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right)\right)=0
$$

that is, $x_{1} \mathfrak{h}\left(x_{3}\right) x_{2}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1} \mathfrak{h}\left(x_{3}\right)=0$. This implies

$$
x_{1}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{2}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=0
$$

and hence we find that $\left(I\left[\mathfrak{g}\left(x_{3}\right), x_{3}\right]\right)^{3}=(0) \forall x_{3} \in \mathfrak{I}$. Since a semiprime ring contains no nonzero nilpotent left ideals (see [17]), it follows that $\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0)$ $\forall x_{3} \in \mathfrak{I}$, as desired.

By the similar technique, the same conclusion holds for $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)-$ $x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$.

Using the similar approach as used in the proof of Theorem 3.5 one can prove the following:

Theorem 3.6. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R}. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)-\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{2} x_{1} \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $\mathfrak{I}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]=(0) \forall x_{3} \in \mathfrak{I}$.

Corollary 3.7. Let \Re be a semiprime ring and \Re admitting two multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R}. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{R}$, then \mathfrak{h} is a commuting map on \mathfrak{R}.

In view of Theorem 3.5 and Lemma 2.1, we immediately get the following corollary.

Corollary 3.8. Let R be a semiprime ring and \mathfrak{R} admitting two multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with a derivation $\mathfrak{h}: \mathfrak{R} \rightarrow \mathfrak{R}$ and a mapping $\mathfrak{g}: \mathfrak{R} \rightarrow \mathfrak{R}$ respectively. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R}) \forall$ $x_{1}, x_{2} \in \mathfrak{R}$, then $\mathfrak{h}=0$ or \mathfrak{R} contains a nonzero central ideal.

Theorem 3.9. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R}. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm x_{2} x_{1} \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $x_{1}\left[\mathfrak{h}\left(x_{1}\right), x_{1}\right]_{2}=(0) \forall x_{1} \in \mathfrak{I}$.

Proof. By our hypothesis

$$
\begin{equation*}
\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right)+x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{19}
\end{equation*}
$$

Replace x_{1} by $x_{1} x_{3}$, to get

$$
\begin{equation*}
\mathcal{G}\left(x_{1}\right) x_{3} x_{2}+x_{1} \mathfrak{g}\left(x_{3} x_{2}\right)+\mathcal{H}\left(x_{2}\right)\left(\mathcal{H}\left(x_{1}\right) x_{3}+x_{1} \mathfrak{h}\left(x_{3}\right)\right)+x_{2} x_{1} x_{3} \in Z(\mathfrak{R}) \tag{20}
\end{equation*}
$$

that is

$$
\begin{align*}
& \mathcal{G}\left(x_{1}\right) x_{3} x_{2}+x_{1} \mathfrak{g}\left(x_{3} x_{2}\right)-\mathcal{G}\left(x_{1} x_{2}\right) x_{3}+\mathcal{H}\left(x_{2}\right) x_{1} \mathfrak{h}\left(x_{3}\right) \tag{21}\\
& +\left(\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right)+x_{2} x_{1}\right) x_{3} \in Z(\mathfrak{R}) .
\end{align*}
$$

Since $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right)+x_{2} x_{1} \in Z(\mathfrak{R})$, we obtain

$$
\left[\left(\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right)+x_{2} x_{1}\right) x_{3}, x_{3}\right]=0
$$

Thus we find that

$$
\begin{equation*}
\left[\mathcal{G}\left(x_{1}\right)\left[x_{3}, x_{2}\right], x_{3}\right]+\left[x_{1} \mathfrak{g}\left(x_{3} x_{2}\right) x_{1} \mathfrak{g}\left(x_{2}\right) x_{3}, x_{3}\right]+\left[\mathcal{H}\left(x_{2}\right) x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 . \tag{22}
\end{equation*}
$$

Substituting x_{3}^{2} in place of x_{2} in (22), we get

$$
\begin{equation*}
\left[x_{1} x_{3}^{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{23}
\end{equation*}
$$

Again, replacing x_{1} by $x_{3} x_{1}$ and x_{2} by x_{3} in (22), we obtain

$$
\begin{equation*}
x_{3}\left[x_{1} x_{3} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 . \tag{24}
\end{equation*}
$$

comparing (24) and (23), we gte

$$
\begin{equation*}
\left[\left[x_{1}, x_{3}\right] x_{3} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{25}
\end{equation*}
$$

Now replace x_{1} with $x_{3} x_{1}$ in (25), to get

$$
\begin{equation*}
x_{3}\left[\left[x_{1}, x_{3}\right] x_{3} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{26}
\end{equation*}
$$

Multiplying (25) from the left by x_{3} in and then comparing with (26), we find that

$$
\begin{equation*}
\left[x_{3}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{27}
\end{equation*}
$$

Again putting $x_{1}=x_{1} x_{3}$ in (25), we get

$$
\begin{equation*}
\left[x_{3}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1} x_{3} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \tag{28}
\end{equation*}
$$

Now right multiplying (27) by x_{3} and comparing with (28), we have
$\left[x_{3}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right], x_{3}\right]=0$ and hence

$$
\begin{equation*}
\left[x_{3}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1} x_{3}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right], x_{3}\right]=0 \tag{29}
\end{equation*}
$$

Let $\lambda\left(x_{3}\right)=x_{1}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right]$. This implies $\left[\lambda\left(x_{3}\right) x_{1} \lambda\left(x_{1}\right), x_{3}\right]$, that is,

$$
\begin{equation*}
\lambda\left(x_{3}\right) x_{1} \lambda\left(x_{1}\right) x_{3}-x_{3} \lambda\left(x_{3}\right) x_{1} \lambda\left(x_{3}\right) \tag{30}
\end{equation*}
$$

$\forall x_{1}, x_{3} \in \mathfrak{I}$. In (30), replacing x_{1} with $x_{1} \lambda\left(x_{3}\right) u_{1}$, where $u_{1} \in \mathfrak{I}$, we obtain

$$
\begin{equation*}
\lambda\left(x_{3}\right) x_{1} \lambda\left(x_{3}\right) u_{1} \lambda\left(x_{3}\right) x_{3}-x_{3} \lambda\left(x_{3}\right) x_{1} \lambda\left(x_{3}\right) u_{1} \lambda\left(x_{3}\right)=0 . \tag{31}
\end{equation*}
$$

Using (30) and (31) gives that

$$
\lambda\left(x_{3}\right) x_{1} x_{3} \lambda\left(x_{3}\right) u_{1} \lambda\left(x_{3}\right)-\lambda\left(x_{3}\right) x_{1} \lambda\left(x_{3}\right) x_{3} u_{1} \lambda\left(x_{3}\right)=0
$$

that is $\lambda\left(x_{3}\right) x_{1}\left[\lambda\left(x_{3}\right), x_{3}\right] u_{1} \lambda\left(x_{3}\right)=0 \forall x_{1}, u_{1}, x_{3} \in \mathfrak{I}$. This implies

$$
\left[\lambda\left(x_{3}\right), x_{3}\right] x_{1}\left[\lambda\left(x_{3}\right), x_{3}\right] u_{1}\left[\lambda\left(x_{3}\right), x_{3}\right]=0
$$

$\forall x_{1}, u_{1}, x_{3} \in \mathfrak{I}$ and so $\left(\mathfrak{I}\left[\lambda\left(x_{3}\right), x_{3}\right]\right)^{3}=0 \forall x_{3} \in I$. Since R is semiprime, it contains no nilpotent left ideal, implying $I\left[\lambda\left(x_{3}\right), x_{3}\right]=0 \forall x_{3} \in \mathfrak{I}$ that is, $\mathfrak{I}\left[\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right], x_{3}\right]=(0)$, as desired.

In the similar manner, we can prove the same conclusion for $\mathcal{G}\left(x_{1} x_{2}\right)+$ $\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$.

Theorem 3.10. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R}. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)-\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm x_{2} x_{1} \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $x_{1}\left[\mathfrak{h}\left(x_{1}\right), x_{1}\right]_{2}=(0) \forall x_{1} \in \mathfrak{I}$.

Proof. If we replace \mathcal{G} with $-\mathcal{G}$ and \mathfrak{h} with $-\mathfrak{h}$ in Theorem 3.5, we conclude that $(-\mathcal{G})\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, implies that $I\left[(-h)\left(x_{1}\right), x_{1}\right]_{2}=(0) \forall x_{1} \in I$, that is $\mathcal{G}\left(x_{1} x_{2}\right)-\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{2}\right) \mp x_{2} x_{1} \in Z(\mathfrak{R}) \forall$ $x_{1}, x_{2} \in \mathfrak{I}$, implies that $x_{1}\left[\mathfrak{h}\left(x_{1}\right), x_{1}\right]_{2}=(0) \forall x_{1} \in \mathfrak{I}$, as desired.

Corollary 3.11. Let \mathfrak{R} be a semiprime ring, \mathfrak{R} admitting two multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mapping \mathfrak{g} and \mathfrak{h} respectively. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{R}$, then \mathfrak{h} is a centralizing map on \mathfrak{R}.

In view of Theorem 3.9, Lemma 2.2 and Lemma 2.1 we immediately get the following corollary.

Corollary 3.12. Let \mathfrak{R} be a semiprime ring, \mathfrak{R} admitting two multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with a derivation \mathfrak{h} and a mapping \mathfrak{g} respectively. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathfrak{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{R}$, then $\mathfrak{g}=0$ or $\mathfrak{\Re}$ contains a nonzero central ideal.

Theorem 3.13. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R} and $\varphi: R \rightarrow R$ any mapping. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm\left[x_{1}, \varphi\left(x_{2}\right)\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $x_{1}\left[\mathfrak{h}\left(x_{1}\right), x_{1}\right]_{2}=0$, $\forall x_{1} \in \mathfrak{I}$.

Proof. We begin with the hypothesis

$$
\begin{equation*}
\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right)+\left[x_{1}, \varphi\left(x_{2}\right)\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{32}
\end{equation*}
$$

Now replacing x_{1} with $x_{1} x_{3}$,we obtain

$$
\begin{aligned}
& \mathcal{G}\left(x_{1}\right) x_{3} x_{2}+x_{1} \mathfrak{g}\left(x_{3} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) x_{3}+\mathcal{H}\left(x_{2}\right) x_{1} \mathfrak{h}\left(x_{3}\right) \\
& +x_{1}\left[x_{3}, \varphi\left(x_{2}\right)\right]+\left[x_{1}, \varphi\left(x_{2}\right)\right] x_{3} \in Z(\mathfrak{R}) .
\end{aligned}
$$

This relation can be re-written as

$$
\begin{aligned}
& \left(\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right)+\left[x_{1}, \varphi\left(x_{2}\right)\right]\right) x_{3}-\mathcal{G}\left(x_{1} x_{2}\right) x_{3}+\mathcal{G}\left(x_{1}\right) x_{3} x_{2} \\
& +x_{1} \mathfrak{g}\left(x_{3} x_{2}\right)+\mathcal{H}\left(x_{2}\right) x_{1} \mathfrak{h}\left(x_{3}\right)+x_{1}\left[x_{3}, \varphi\left(x_{2}\right)\right] \in Z(\mathfrak{R}) .
\end{aligned}
$$

Now commuting both sides with x_{3} and then using equation (32), we obtain

$$
\left[\mathcal{G}\left(x_{1}\right) x_{3} x_{2}+x_{1} \mathfrak{g}\left(x_{3} x_{2}\right)-\mathcal{G}\left(x_{1} x_{2}\right) x_{3}+\mathcal{H}\left(x_{2}\right) x_{1} \mathcal{H}\left(x_{3}\right)+x_{1}\left[x_{3}, \varphi\left(x_{2}\right)\right], x_{3}\right]=0
$$

that is

$$
\begin{align*}
& {\left[\mathcal{G}\left(x_{1}\right)\left[x_{3}, x_{2}\right], x_{3}\right]+\left[x_{1} \mathfrak{g}\left(x_{3} x_{2}\right)-x_{1} \mathfrak{g}\left(x_{2}\right) x_{3}, x_{3}\right]} \\
& +\left[\mathcal{H}\left(x_{2}\right) x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{1}\left[x_{3}, \varphi\left(x_{2}\right)\right], x_{3}\right]=0 . \tag{33}
\end{align*}
$$

Now substituting $x_{3} x_{1}$ for x_{1} and x_{3} for x_{2} in above relation, we get

$$
\begin{align*}
0= & {\left[x_{3} x_{1} \mathfrak{g}\left(x_{3}^{2}\right)-x_{3} x_{1} \mathfrak{g}\left(x_{3}\right) x_{3}, x_{3}\right]+\left[\mathcal{H}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right] } \\
& +\left[x_{3} x_{1}\left[x_{3}, \varphi\left(x_{3}\right)\right], x_{3}\right] \\
= & x_{3}\left[x_{1} x_{3} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+x_{3}\left[x_{1}\left[x_{3}, \varphi\left(x_{3}\right)\right], x_{3}\right] . \tag{34}
\end{align*}
$$

Replacing x_{2} with x_{3}^{2} in (33), we get

$$
\left[x_{1} \mathfrak{g}\left(x_{3}^{3}\right)-x_{1} \mathfrak{g}\left(x_{3}^{2}\right) x_{3}, x_{3}\right]+\left[\mathcal{H}\left(x_{3}^{2}\right) x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{1}\left[x_{3}, \varphi\left(x_{3}^{2}\right)\right], x_{3}\right]=0,
$$

that is

$$
\begin{align*}
& {\left[x_{1} x_{3}^{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+x_{3}\left[\mathfrak{h}\left(x_{3}\right) x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]} \tag{35}\\
& +\left[x_{1}\left[x_{3}, \varphi\left(x_{3}^{2}\right)\right], x_{3}\right]=0 .
\end{align*}
$$

Subtracting (35) from (34), we obtain

$$
\begin{align*}
& x_{3}\left[x_{1} x_{3} \mathfrak{g}\left(x_{3}\right), x_{3}\right]\left[x_{1} x_{3}^{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]-x_{3}\left[\mathfrak{h}\left(x_{3}\right) x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right] \tag{36}\\
& +x_{3}\left[x_{1}\left[x_{3}, \varphi\left(x_{3}\right)\right], x_{3}\right]-\left[x_{1}\left[x_{3}, \varphi\left(x_{3}^{2}\right)\right], x_{3}\right]=0
\end{align*}
$$

Again substituting $x_{3} x_{1}$ in place of x_{1} in (36), we get

$$
\begin{align*}
& x_{3}^{2}\left[x_{1} x_{3} \mathfrak{g}\left(x_{3}\right), x_{3}\right]-x_{3}\left[x_{1} x_{3}^{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right] x_{3}\left[\mathfrak{h}\left(x_{3}\right) x_{3} x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right] \\
& +x_{3}^{2}\left[x_{1}\left[x_{3}, \varphi\left(x_{3}\right)\right], x_{3}\right]-x_{3}\left[x_{1}\left[x_{3}, \varphi\left(x_{3}^{2}\right)\right], x_{3}\right]=0 . \tag{37}
\end{align*}
$$

Left multiplying (36) by x_{3} and then subtracting from (37), we obtain

$$
\begin{equation*}
\left[x_{3}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{1} \mathfrak{h}\left(x_{3}\right), x_{3}\right]=0 \forall x_{1}, x_{3} \in \mathfrak{I} . \tag{38}
\end{equation*}
$$

Since (38) is same as (27) in Theorem 3.9, hence by same argument of Theorem 3.9 we get the required result.

By the same manner, we can prove that the same conclusion holds for $\mathcal{G}\left(x_{1} x_{2}\right)+$ $\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right)-\left[x_{1}, \varphi\left(x_{2}\right)\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$.

One can prove the following theorem using the same technique as above.
Theorem 3.14. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R} and $\varphi: \Re \rightarrow \Re$ any mapping. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $G\left(x_{1} x_{2}\right)-H\left(x_{2}\right) H\left(x_{1}\right) \pm\left[x_{1}, \varphi\left(x_{2}\right)\right] \in Z(R) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $x_{1}\left[\mathfrak{h}\left(x_{1}\right), x_{1}\right]_{2}=$ $0, \forall x_{1} \in \mathfrak{I}$.

Corollary 3.15. Let \mathfrak{R} be a semiprime ring and $\varphi: \mathfrak{R} \rightarrow \mathfrak{R}$ any mapping. Suppose that $\mathcal{G}, \mathcal{H}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a multiplicative (generalized)-derivation associated with the map $\mathfrak{g}, \mathfrak{h}: \mathfrak{R} \rightarrow \mathfrak{R}$. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm\left[x_{1}, \varphi\left(x_{2}\right)\right] \in Z(\mathfrak{R}) \forall$ $x_{1}, x_{2} \in \mathfrak{I}$, then \mathfrak{h} is a centralizing map on \mathfrak{R}.

In view of Theorem 3.13, Lemma 2.2 and Lemma 2.1 we immediately get the following corollary.

Corollary 3.16. Let \mathfrak{R} be a semiprime ring and $\varphi: \Re \rightarrow \Re$ any mapping. Suppose that \mathcal{G} and \mathcal{H} are two multiplicative (generalized)-derivations associated with a derivation h and a mapping \mathfrak{g} respectively on \mathfrak{R}. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm$ $\left[x_{1}, \varphi\left(x_{2}\right)\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $\mathfrak{h}=0$ or \mathfrak{R} contains a nonzero central ideal.

Theorem 3.17. Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero left ideal of \mathfrak{R} and $\varphi: \Re \rightarrow \Re$ any mapping. If \Re admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm\left[\varphi\left(x_{1}\right), x_{2}\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $x_{1}\left[\mathfrak{h}\left(x_{1}\right), x_{1}\right]_{2}=0$ $\forall x_{1} \in \mathfrak{I}$.

Proof. We begin with the assumption

$$
\begin{equation*}
\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)+\left[\varphi\left(x_{1}\right), x_{2}\right] \in Z(\Re) . \tag{39}
\end{equation*}
$$

$\forall x_{1}, x_{2} \in \mathfrak{I}$. Replacing $x_{2} x_{3}$ in place of x_{2}, we obtain $\mathcal{G}\left(x_{1} x_{2}\right) x_{3}+x_{1} x_{2} \mathfrak{g}\left(x_{3}\right)+$ $\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) x_{3}+\mathcal{H}\left(x_{1}\right) x_{2} \mathfrak{h}\left(x_{3}\right)+x_{2}\left[\varphi\left(x_{1}\right), x_{3}\right]+\left[\varphi\left(x_{1}\right), x_{2}\right] x_{3} \in Z(\mathfrak{R})$. Commuting with x_{3} and using $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)+\left[\varphi\left(x_{1}\right), x_{2}\right] \in Z(\mathfrak{R})$, we get

$$
\begin{equation*}
\left[x_{1} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{2}\left[\varphi\left(x_{1}\right), x_{3}\right], x_{3}\right]=0 . \tag{40}
\end{equation*}
$$

Again replace x_{1} by x_{1}^{2} in (40), we get

$$
\begin{align*}
& {\left[x_{1}^{2} x_{2} \mathfrak{g}\left(x_{3}\right), x_{3}\right]+\left[\mathcal{H}\left(x_{1}\right) x_{1} x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]} \\
& +\left[x_{1} \mathfrak{h}\left(x_{1}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{2}\left[\varphi\left(x_{1}^{2}\right), x_{3}\right], x_{3}\right]=0 . \tag{41}
\end{align*}
$$

In (40), replacing $x_{1} x_{2}$ in place of x_{2} and then subtracting from (41), we obtain

$$
\begin{equation*}
\left[x_{1} \mathfrak{h}\left(x_{1}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{2}\left[\varphi\left(x_{1}^{2}\right), x_{3}\right], x_{3}\right]\left[x_{1} x_{2}\left[\varphi\left(x_{1}\right), x_{3}\right], x_{3}\right]=0 . \tag{42}
\end{equation*}
$$

In particular for $x_{1}=x_{3}$, we have

$$
\begin{equation*}
\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{2}\left[\varphi\left(x_{3}^{2}\right), x_{3}\right], x_{3}\right]\left[x_{3} x_{2}\left[\varphi\left(x_{3}\right), x_{3}\right], x_{3}\right]=0 . \tag{43}
\end{equation*}
$$

Again substituting $x_{3} x_{2}$ in place of x_{2} in (42), we get

$$
\begin{equation*}
\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{3} x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]+\left[x_{3} x_{2}\left[\varphi\left(x_{3}^{2}\right), x_{3}\right], x_{3}\right]\left[x_{3}^{2} x_{2}\left[\varphi\left(x_{3}\right), x_{3}\right], x_{3}\right]=0 . \tag{44}
\end{equation*}
$$

Left multiplying (43) by x_{3} and then subtracting from (44), we obtain

$$
\begin{align*}
0 & =\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{3} x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right]-x_{3}\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right] \\
& =\left[x_{3} \mathfrak{h}\left(x_{3}\right) x_{3}-x_{3}^{2} \mathfrak{h}\left(x_{3}\right) x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right] \tag{45}\\
& =\left[x_{3}\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right] x_{2} \mathfrak{h}\left(x_{3}\right), x_{3}\right] .
\end{align*}
$$

Since (45) and (27) are identical, by Theorem 3.9 we conclude that $\Im\left[\left[\mathfrak{h}\left(x_{3}\right), x_{3}\right], x_{3}\right]=(0)$.

By the same manner, we can prove that the same conclusion holds for $\mathcal{G}\left(x_{1} x_{2}\right)+$ $\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)\left[\varphi\left(x_{1}\right), x_{2}\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$. The proof of Theorem is completed.

Using the same method one can prove the following theorem.
Theorem 3.18. Let R be a semiprime ring, I be a nonzero left ideal of R and $\varphi: R \rightarrow R$ any mapping. If \mathfrak{R} admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $G\left(x_{1} x_{2}\right)-H\left(x_{2}\right) H\left(x_{1}\right) \pm\left[\varphi\left(x_{1}\right), x_{2}\right] \in Z(R) \forall x_{1}, x_{2} \in I$, then $x_{1}\left[h\left(x_{1}\right), x_{1}\right]_{2}=0$ $\forall x_{1} \in I$.
Corollary 3.19. Let \mathfrak{R} be a semiprime ring and $\varphi: \mathfrak{R} \rightarrow \mathfrak{R}$ any mapping. Suppose that \mathcal{G} and \mathcal{H} are two multiplicative (generalized)-derivations associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R}. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm\left[\varphi\left(x_{1}\right), x_{2}\right] \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then \mathfrak{h} is a centralizing map on \mathfrak{R}.

In view of Theorem 3.17, Lemma 2.2 and Lemma 2.1 we immediately get the following corollary.
Corollary 3.20. Let \mathfrak{R} be a semiprime ring and $\varphi: \mathfrak{R} \rightarrow \mathfrak{R}$ any mapping. Suppose that \mathcal{G} and \mathcal{H} are two multiplicative (generalized)-derivations associated with a derivation \mathfrak{h} and a mapping \mathfrak{g} respectively on \mathfrak{R}. If $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) H\left(x_{1}\right) \pm$ $\left[\varphi\left(x_{1}\right), x_{2}\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $\mathfrak{h}=0$ or \mathfrak{R} contains a nonzero central ideal.

The following Theorem is an immediate consequence of Theorem 3.13, and Theorem 3.17.

Theorem 3.21. Let \mathfrak{R} be a semiprime ring and \mathfrak{I} be a nonzero left ideal of \mathfrak{R}. If $\mathfrak{\Re}$ admits a multiplicative (generalized)-derivations \mathcal{G} and \mathcal{H} associated with the mappings \mathfrak{g} and \mathfrak{h} respectively on \mathfrak{R} such that $\mathcal{G}\left(x_{1} x_{2}\right)-\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm\left[x_{1}, x_{2}\right] \in$ $Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$, then $x_{1}\left[\mathfrak{h}\left(x_{1}\right), x_{1}\right]_{2}=0 \forall x_{1} \in \mathfrak{I}$.

Example 3.22. Consider

$$
\mathfrak{R}=\left\{\left.\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\} .
$$

Let $X=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ we note that $X \mathfrak{R} X=0$ but $X \neq 0$ implies that \mathfrak{R} is not semiprime ring. Now, we define $\mathcal{G}, \mathcal{H}, \mathfrak{g}, \mathfrak{h}: \mathfrak{R} \rightarrow \mathfrak{R}$ by

$$
\begin{aligned}
\mathcal{G}\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 & a & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } \mathfrak{g}\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & a^{2} & b^{2} \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right) \\
\mathcal{H}\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 & a & 0 \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \text { and } \mathfrak{h}\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & a b & b^{2} \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Then \mathcal{G} and \mathcal{H} are multiplicative (generalized)-derivations associated with the mappings \mathfrak{g} and \mathfrak{h}, respectively and φ is a identity mapping on \mathfrak{R}. Let $\mathfrak{I}=$ $\left\{\left.\left(\begin{array}{lll}0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, b \in \mathbb{Z}\right\}$. It is easy to verify that \mathfrak{I} is an ideal of \mathfrak{R} and satisfying the following conditions: $($ i $) \mathcal{G}\left(x_{1} x_{2}\right) \pm \mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right)+x_{1} x_{2} \in Z(\mathfrak{R})$, (ii) $\mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{1}\right) \mathcal{H}\left(x_{2}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R}),(i i i) \mathcal{G}\left(x_{1} x_{2}\right)+\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm x_{2} x_{1} \in Z(\mathfrak{R})$ and (iv) $\mathcal{G}\left(x_{1} x_{2}\right)-\mathcal{H}\left(x_{2}\right) \mathcal{H}\left(x_{1}\right) \pm\left[x_{1}, x_{2}\right] \in Z(\mathfrak{R}) \forall x_{1}, x_{2} \in \mathfrak{I}$ but \mathfrak{R} is noncommutative. Hence, the hypothesis of semiprimeness in the Theorem 3.1, Theorem 3.5, Theorem 3.9 and Theorem 3.21 cannot be omitted.

References

1. H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings Canad. Math. Bull. 30(1) (1987), 91-101.
2. M. Bres̆ar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
3. B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequationes Math. 86(1-2) (2013), 65-79.
4. B. Dhara and S. Ali, On n-centralizing generalized derivations in semiprime rings with applications to C^{*}-algebras, J. Algebra and its Applications 11(6) (2012), DOI: 10.1142/S0219498812501113.
5. M. N. Daif, When in a multiplicative derivation additive?, Int. J. Math. Math. Sci. 14(3) (1991), 615-618.
6. M. N. Daif and M. S. Tammam El-Sayiad, Multiplicative generalized derivations which are additiv, East-West J. Math. 9(1) (1997), 31-37.
7. B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4) (1998), 1147-1166.
8. W. S. Martidale III, When are multiplicative maps additive, Proc. Am. Math. Soc. 21(1969), 695-698.
9. S. K. Tiwari, R. K. Sharma and B. Dhara Identities related to generalized derivation on ideal in prime rings, Beitr Algebra Geom 57 (4) (2016), 809821.

Nadeem ur Rehman received M.Sc. and Ph.D from Aligarh Muslim University, Aligarh, India. He is a recipient of DAAD fellowship of Germany. He started his teaching career in 2003 as Assistant Professor in Birla Institute of Technology \& Sciences, Pilani. He jointed Aligarh Muslim University, Aligarh in 2006 and has designated as an Associate Professor in 2015. His research interests include Ring theory.

Department of Mathematics, Aligarh Muslim University, Aligarh (U.P.) 202002, India.
e-mail: nu.rehman.mm@amu.ac.in
Motoshi Hongan received M. Sc. from Okayama University, Okayama, Japan and received Ph.D. from Hiroshima University, Hiroshima, Japan. He is a professor emeritus of Tsuyama College of Technology, Tsuyama, Okayama, Japan. His research include Ring Theory.

Seki 772, Maniwa, Okayama 719-3156, JAPAN.
e-mail: hongan0061@gmail.com

[^0]: Received August 11, 2017. Revised October 20, 2017. Accepted October 23, 2017. * Corresponding author.
 (c) 2018 Korean SIGCAM and KSCAM.

