References
- H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings Canad. Math. Bull. 30(1) (1987), 91-101.
- M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93. https://doi.org/10.1017/S0017089500008077
- B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequationes Math. 86(1-2) (2013), 65-79. https://doi.org/10.1007/s00010-013-0205-y
- B. Dhara and S. Ali, On n-centralizing generalized derivations in semiprime rings with applications to C*-algebras, J. Algebra and its Applications 11(6) (2012), DOI:10.1142/S0219498812501113.
- M. N. Daif, When in a multiplicative derivation additive?, Int. J. Math. Math. Sci. 14(3) (1991), 615-618. https://doi.org/10.1155/S0161171291000844
- M. N. Daif and M. S. Tammam El-Sayiad, Multiplicative generalized derivations which are additiv, East-West J. Math. 9(1) (1997), 31-37.
- B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4) (1998), 1147-1166. https://doi.org/10.1080/00927879808826190
- W. S. Martidale III, When are multiplicative maps additive, Proc. Am. Math. Soc. 21(1969), 695-698. https://doi.org/10.1090/S0002-9939-1969-0240129-7
- S. K. Tiwari, R. K. Sharma and B. Dhara Identities related to generalized derivation on ideal in prime rings, Beitr Algebra Geom 57(4) (2016), 809821.