• Title/Summary/Keyword: semi-slant submanifold

Search Result 8, Processing Time 0.018 seconds

SLANT SUBMANIFOLDS OF AN ALMOST PRODUCT RIEMANNIAN MANIFOLD

  • Sahin Bayram
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.717-732
    • /
    • 2006
  • In this paper, we study both slant 3nd semi-slant sub-manifolds of an almost product Riemannian manifold. We give characterization theorems for slant and semi-slant submanifolds and investigate special class of slant submanifolds which are product version of Kaehlerian slant submanifold. We also obtain integrability conditions for the distributions which are involved in the definition of a semi-slant submanifold. Finally, we prove a theorem on the geometry of leaves of distributions under a condition.

SLANT SUBMANIFOLDS OF QUATERNION KAEHLER MANIFOLDS

  • Sahin, Bayram
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.123-135
    • /
    • 2007
  • This paper has two objectives. The first objective is to study slant submanifolds of quaternion Kaehler manifolds. We give characterization theorems and examples of slant submanifolds. For the second objective, we introduce the notion of semi-slant submanifolds which are different from the definition of N. Papaghiuc [15]. We obtain characterization theorems, examples of semi-slant sub manifolds and investigate the geometry of leaves of distributions which are involved in the definition of semi-slant submanifolds.

Simons' Type Formula for Kaehlerian Slant Submanifolds in Complex Space Forms

  • Siddiqui, Aliya Naaz;Shahid, Mohammad Hasan;Jamali, Mohammed
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.149-165
    • /
    • 2018
  • A. Bejancu [2] was the first who instigated the new concept in differential geometry, i.e., CR-submanifolds. On the other hand, CR-submanifolds were generalized by B. Y. Chen [7] as slant submanifolds. Further, he gave the notion of a Kaehlerian slant submanifold as a proper slant submanifold. This article has two objectives. For the first objective, we derive Simons' type formula for a minimal Kaehlerian slant submanifold in a complex space form. Then, by applying this formula, we give a complete classification of a minimal Kaehlerian slant submanifold in a complex space form and also obtain its some immediate consequences. The second objective is to prove some results about semi-parallel submanifolds.

Non Existence of 𝒫ℛ-semi-slant Warped Product Submanifolds in a Para-Kähler Manifold

  • Sharma, Anil
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.197-210
    • /
    • 2020
  • In this paper, we prove that there are no non-trivial 𝒫ℛ-semi-slant warped product submanifolds with proper slant coefficients in para-Kähler manifolds ${\bar{M}}$. We also present a numerical example that illustrates the existence of a 𝒫ℛ-warped product submanifold in ${\bar{M}}$.

RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-998
    • /
    • 2009
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, $\theta$-slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant $\Theta_k$ of different kind of submanifolds of a S-space form $\tilde{M}(c)$ are obtained.

CERTAIN RESULTS ON SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE-FORMS

  • Yadav, Sunil Kumar;Chaubey, Sudhakar K
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.123-137
    • /
    • 2020
  • The object of the present paper is to study certain geometrical properties of the submanifolds of generalized Sasakian space-forms. We deduce some results related to the invariant and anti-invariant slant submanifolds of the generalized Sasakian spaceforms. Finally, we study the properties of the sectional curvature, totally geodesic and umbilical submanifolds of the generalized Sasakian space-forms. To prove the existence of almost semiinvariant and anti-invariant submanifolds, we provide the non-trivial examples.