• Title/Summary/Keyword: self inductance

Search Result 132, Processing Time 0.028 seconds

Analysis and Application of Compact Planar Multi-Loop Self-Resonant Coil of High Quality Factor with Coaxial Cross Section (고품질 계수를 갖는 소형 평판형 동축 단면 다중 루프 자기 공진 코일 해석 및 응용)

  • Son, Hyeon-Chang;Kim, Jinwook;Kim, Do-Hyeon;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.466-473
    • /
    • 2013
  • In this paper, a compact planar multi-loop self-resonant coil of high quality factor with a coaxial cross section is proposed for effective wireless charging. The proposed coil has high Q-factor and a resonant frequency of a coil can be easily controlled by adjusting distributed capacitance. For designing the coil, a self-inductance and a distributed capacitance are calculated theoretically. The self-inductance is calculated from the sum of the mutual energies between small circular loops that are made by dividing the cross section of the coil. To verify its properties and calculation results, the self-resonant coils are fabricated by using a coaxial cable with characteristic impedance of $50{\Omega}$. The measured frequencies are very consistent with the calculated ones. In addition, the resonant frequency can be adjusted slightly by the tuning parameter ${\gamma}$. The resonant coils are applied to a tablet PC, the Q-factors of the Tx and Rx resonant coils are 282 and 135, respectively. As a result of measurement when height between the two resonant coils is 4.4 cm, the power transfer efficiency is more than 80 % within a radius of 5 cm.

Self-Commissioning for Surface-Mounted Permanent Magnet Synchronous Motors

  • Urasaki Naomitsu;Senjyu Tomonobu;Uezato Katsumi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.331-335
    • /
    • 2001
  • This paper presents the self-commissioning for surface-mounted permanent magnet synchronous motor. The proposed strategy executes three tests with a standard inverter drive system. To do this, synchronous d-q axes currents are appropriately controlled for each test. From the three tests, armature resistance, armature inductance, equivalent iron loss resistance, and emf coefficient are identified automatically. The validity of the proposed strategy is confirmed by experimental results.

  • PDF

Self-tuning control of turn-off angle for Switched reluctance motor drive (스위치드 리럭턴스 전동기에서 자기동조 방식에 의한 최적 턴오프각의 결정)

  • Moon, Jin-Young;Jang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.487-489
    • /
    • 1997
  • The control of the switched reluctance motor is usually on the inductance profiles as a function of position. In this paper, a control scheme to maximize the motor torque is proposed by determining optimal turn-off angle with a self-tuning control method.

  • PDF

The Development of Diagnostic Sensor for Inner Deterioration of Covered Electric Wire (피복전선의 내부 열화 검출용 센서 개발)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • In this research, it have developed a sensor that could diagnose inner deterioration of covered wires. With this sensor it observed results from simulation, and the attribute required for realization. For simulation it have used FLUX, it have considered all of geometric and electromagnetic information from coil and base metal that influences eddy current sensor's property in order to predict the final result. It assumed there is no mutual inductance in the coil with N number of turns, because equivalent current flows in coil that is continuously connected in eddy current sensor. It assumed circular coil loop draws a circle, always have self inductance, and they are connected in series and overlapped according number of turns (N) in coil, and bobbin configuration. Actual sensor was produced with consideration of inductance and number of turns (N). In conclusion, it were able to test the dependency through results from simulation, actual measurement, and modeling of simulation. It is considered that attributes of respective base metal and structure can be predicted by simulating in advance.

Study on Frequency Characteristics for Double-Layer Symmetric Spiral Inductor (2층 대칭 나선형 인덕터에 대한 주파수 특성 연구)

  • Kim, Jae-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.315-320
    • /
    • 2022
  • In the case of a general spiral inductor, the orientation of the port is affected as it has an asymmetric structure. In this paper, double-layer spiral inductor that can have a symmetrical structure is proposed, and the simulation and frequency characteristics are analyzed. Compared to the conventional single-layer symmetrical inductor having an inductance of 3.9~4.2nH, the proposed double-layer symmetric spiral inductor has an inductance of 11~12nH in 0.3~1.2GHz frequency range, a quality factor of about 4.4 in 800MHz, and a self-resonant frequency of about 2.7~2.8GHz without changing the port. Compared to the general spiral inductor having a large difference depending on the port, it was confirmed that the influence on the port direction was small.

Study on Frequency Characteristics of Rectangle Spiral Planar Inductor (사각 나선형 평면 인덕터의 주파수 특성에 관한 연구)

  • Kim, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2330-2334
    • /
    • 2014
  • In this study, we confirmed the frequency characteristics of planar spiral inductor based on non-contact method AC coupling for wireless signal transmission. The dielectric constant variation of the substrate does not directly effect the inductance of device but effect the electrostatic capacity of device. Therefore, its change self-resonance frequency. The thickness increment of the substrate increase inductance but decrease self-resonance frequency. Because, the thickness decrement of the substrate make the inside electrostatic capacity increment.

Electrical Characterization of BGA interconnection for RF packaging (Radio Frequency 회로 모듈 BGA 패키지)

  • Kim, Dong-Young;Woo, Sang-Hyun;Choi, Soon-Shin;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.96-99
    • /
    • 2000
  • We presents a BGA(Ball Grid Array) package for RF circuit modules and extracted its electrical parameters. We constructed a BGA package of ITS(Intelligent Transportation System) RF module and examined electrical parameters with a HP5475A TDR(Time Domain Reflectometry) equipment and compared its electrical parasitic parameters with PCB RF circuits. With a BGA substrate of 3 $\times$ 3 input and output terminals, we have found that self capacitance of BGA solder ball is 68.6fF, self inductance 146pH, mutual capacitance 10.9fF and mutual inductance 16.9pH. S parameter measurement with a HP4396B Network Analyzer showed the resonance frequency of 1.55㎓ and the loss of 0.26dB. Thus, we may improve electrical performance when we use BGA package structures in the design of RF circuit modules.

  • PDF

Detent Torque of Parking Magnet Starting Device Installed in the Single-Phase Switched Reluctance Motor (단상 스위치드 릴럭턴스 모터에 설치된 영구자석 기동장치의 디텐트 토크)

  • Kim, Jun-Ho;Lee, Seung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.408-412
    • /
    • 2010
  • The single-phase switched reluctance motor(SRM) generates the positive torque in the restricted section. So, it can not started by itself and the torque ripple is heavier than poly-phase. For self-starting and fixing rotating direction, the rotor should be placed at the rising inductance slope when stationary. The parking permanent magnet locates the rotor in the fixed position, which can be started by it-self. It is very simple and cost effective but has some drawbacks. It affects the rotor during the operation, so the characteristics of motor, such as a torque, speed, and ripple are changed to go bad. This paper presents the detent torque of parking magnet starting device through the finite element analysis and experiments. The finite element analysis is performed at incremental rotor positions over one detent torque cycle for any one pole. The prototype, fabricated in the previous research, is used for the experiments. The inductance, instant torque, and detent torque are calculated using the terminal voltage and phase current. Finally, the finite element analysis result and the experiment result are compared for analysis and validity.

A Study on the Drive Characteristics of SRM by 2-Phase Excitation Method (2상 여자방식에 의한 SRM의 운전특성에 관한 연구)

  • 문재원;오석규;안진우;이일천;황영문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.412-417
    • /
    • 1998
  • This paper suggests the drive characteristics of a Switched Reluctance Motor(SRM) by 2-phase excitation method. T This scheme excites 2 phases simultaneously, which is similar to 2-phase excitation method of a step motor. In this s scheme. the torque is produced by mutual inductances as well as self inductances. The abrupt change of a phase e excitation produces mechanical stresses and it results in vibration and noise. The acoustic noise is reduced remarkably t through the sequential phase excitation in the 2-phase excitation. Operational principle and characteristic comp없1son t to that of the conventional SRM show that this excitation scheme has some advantages including torque ripple and n noise reduction.

  • PDF

Instant Torque of Salient Pole Rotor Type Single-Phase SRM According to Installed Permanent Magnet Starting Device or Not (영구자석 기동장치의 유무에 따른 회전자 돌극형 단상 SRM의 순간 토오크)

  • Kim Jun-Ho;Lee Eun-Woong;Lee Jong-Han;Kim Yong-Hun;Lee Hyun-Woo;Lee Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.959-961
    • /
    • 2004
  • A multi pole SRM(switched reluctance motor) is applied by the regulated current in regular sequence. So, it can be started by itself. But a single phase SRM can not be started by itself because the positive torque is only generated in the limited zone which the inductance is increased. Therefore, it is required auxiliary device for self starting which place the rotor in start position. The prototype was designed and fabricated in the previous research. It has the permanent magnet, which is installed in the bottom of the rotor, for self starting. But the permanent magnet affect the prototype during operation and cause the decrease of the torque and speed. The influence of the permanent magnet on the average torque and speed was already confirmed. On this paper, the instant torque of the prototype was calculated from the experiment results which is the inductance and current according to installed permanent magnet or not.

  • PDF