• Title/Summary/Keyword: selenium peptide

Search Result 10, Processing Time 0.093 seconds

Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok;Kim Young-Ok;Shin Dong-Hoon;Shin Jeong-Hyun;Kim Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1041-1046
    • /
    • 2006
  • Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Production and Characterization of Selenium Peptide from Saccharomyces Cerevisiae (효모를 이용한 selenium peptide 생산 및 특성 연구)

  • 김은기;김영옥;이정옥;이백석
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • Selenium containing peptide was produced by culturing yeast with selenium, Selenium was broadly incorporated in the various size of proteins based on the GPC analysis of the total yeast protein. The ratio of selenium to protein increased with the concentration of added selenium in the culture medium. Antioxidant activity (glutathione peroxidase-like activity) was proportional to the concentration of selenium concentration in the peptide. Different size of proteins were obtained by hydrolyzing the total yeast protein by protease XIV. Average molecular weight of selenium peptide was analyzed by GPC. Glutathione peroxidase (GPx) activity of the selenium peptide increased as the size of peptide decreased. Sodium selenite had strong inhibition on the yeast growth than sodium selenate. The ratio of selenium to protein was higher with sodium selenate than with sodium selenite. These results showed the potentials of selenium peptide production by yeast cultivation.

Effect of Dietary Selenium Binding Yeast Peptide on Growth Performance, Tissue Se, Serum Glutathione Peroxidase Activity and Meat Quality in Finishing Pigs (비육돈에 있어서 Selenium Binding Yeast Peptide의 첨가가 생산성, 조직내 Se함량, 혈청내 GSH-Px의 활성 및 돈육의 품질에 미치는 영향)

  • 권오석;홍종욱;민병준;이원백;손경승;김인호;김진만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1206-1211
    • /
    • 2004
  • This study was conducted to evaluate the effects of selenium binding yeast peptide supplementation on growth performance, tissue Se, serum glutathione peroxidase activity and meat quality in finishing pigs. A total of eighty (Duroc${\times}$Yorkshir${\times}$Landrace) pigs (82.88$\pm$1.23 kg average initial body weight) were used in a 35-day assay. Dietary treatments included 1) CON (basal diet), 2) SY1 (CON diet+0.05% selenium binding yeast peptide), 3) SY2 (CON diet+0.l% selenium binding yeast peptide) and 4) SY3 (CON diet+0.2% selenium binding yeast peptide). Overall period, average daily gain of pigs fed selenium binding yeast peptide diet was higher than that of pigs fed CON diet, however, there was not significant difference (p>0.05). L* (lightness) value of M. longissimus dorsi was higher in SY2 than CON and SY3 (p<0.05). a* (redness) value of M. longissimus dorsi was lower in CON than other treatments (p<0.05). Selenium content in serum was increased as adding selenium binding yeast peptide compared to pigs fed CON diet. However, there was not significantly different among the treatments (p>0.05). Selenium content of M. longissimus dorsi was higher in SY2 (0.021 $\mu$g/g) and SY3 (0.031 $\mu$g/g) than CON diet (0.008 $\mu$g/g) (p<0.05). Selenium content of kidney was increased in SY2 I and SY3 compared to pigs fed CON and SY1 (p<0.05). Selenium content of liver was higher in SY1 than CON (p<0.05). In conclusion, it is suggested that selenium content could be accumulated in M. longissimus dorsi, kidney and liver by selenium binding yeast peptide supplementation, and meat color of M. longissimus dorsi could be affected by selenium binding yeast peptide supplementation.

UVB Protective Effect of Yeast Originated Selenium Peptide on Fibroblast (효모 유래 셀레늄 펩타이드의 인간 섬유아세포에 대한 UVB 보호효과)

  • Lee, Hyang-Bok;Lee, Jung-Ok;Nguyen, Dung H.;Yoon, Sun-A;Um, Ji-Min;Lee, Yu-Ri;Moon, Hyung-In;Chung, Jin-Ho;Kim, Eun-Ki
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.463-468
    • /
    • 2009
  • Selenium-containing peptide (Selenium peptide) was produced by autolysis of Saccharomyces cerevisiae which was cultured in inorganic selenium-supplemented medium. Selenium peptide showed antioxidant activity and protective effects on UVB irradiated human fibroblast. Minimal toxicity of selenium peptide was observed whereas selenium nitrate exhibited cell toxicity as low as $10^{-9}\;M$. Selenium peptide also increased human fibroblast growth, procollagen type I and also decreased MMP-1 (matrix metalloprotease-1). This result showed the potential of selenium peptide as a nontoxic antioxidant.

Production of selenium peptide from yeast

  • Kim, Yeong-Ok;Kim, Eun-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.208-210
    • /
    • 2002
  • Baker's yeast was cultured with $Na_2SeO_3$. Selenium compounds in yeast were extracted and analyzed by size exclusion chromatography. Selenium was broadly distributed in the fraction of protein. For the inhibition test of MMP-l induction, selenium containing compounds was fractioned by ultrafiltration

  • PDF

Bioavailability of Organic Selenium in Selenium-Deficient Rats (셀레늄 결핍식이를 먹인 쥐를 대상으로 유기셀레늄의 생체이용률에 대한 연구)

  • Jung, Eun Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1249-1255
    • /
    • 2015
  • We examined the effects of selenium-binding peptide from sericin hydrolysates on the bioavailability of selenium-deficient rats. Three-week-old male rats were fed a selenium-deficient diet for 4 weeks while the normal control group was fed a normal diet. The selenium-deficient rats were divided into three groups: no treatment, organic selenium (OS), and inorganic selenium (IS). After selenium supplementation for 4 weeks, the level of serum glutathione reduced form in rats treated with organic selenium was significantly higher than that of inorganic selenium. Selenium retention rate also increased significantly in the organic selenium group compared to the inorganic selenium group [selenium deficient diet (DD)+OS 50.25% vs. DD+IS 17.04%, P<0.05]. In conclusion, binding of selenium to peptides from sericin hydrolysates seems to improve its bioavailability, and can hasten a cure for selenium deficiency in experimental rats.

Assessment of Biochemical Profiles in Premenopausal and Postmenopausal Women with Breast Cancer

  • Yadav, Naval Kishor;Poudel, Bibek;Thanpari, C.;Koner, Bidhan Chandra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3385-3388
    • /
    • 2012
  • Objective: The study was conducted to assess biochemical profiles in premenopausal and postmenopausal women having breast cancer. Materials and Methods: A hospital based case control study was carried out at Manipal Teaching Hospital (MTH), Pokhara, Nepal. The analysed variables were age, metabolic profile including total cholesterol, triglycerides, HDL-C, LDL-C, blood sugar, insulin concentration, C-peptide, HbA1c and selenium. Descriptive statistics and testing of hypothesis were used for the analysis using EPI INFO and SPSS 16 software. Results: In premenopausal women, significant differences were noted for total cholesterol (P value <0.001), triglycerides (P value 0.002), HbA1c level (P value <0.001), insulin concentration (P value 0.030), C-peptide concentration (P value 0.001), and selenium (P value <0.001) between cases and controls. Insignificant results were found for HDL-C (P value 0.749), LDL-C (P value 0.933), blood sugar (P value 0.59) and BMI (P value 0.746). Similarly, significant difference in total cholesterol (P value <0.001), triglycerides (P value 0.001), LDL-C (P value <0.001), HDL-C (P value 0.025), blood sugar (P value <0.001), insulin concentration (P value <0.001), c-peptide concentration (P value <0.001), HbA1c level (P value <0.001) and selenium (P value <0.001) were observed for postmenopausal patients and controls. Conclusions: Assessing metabolic changes and their management may be important for control of breast cancer and increased survival.

A Novel Selenium- and Copper-Containing Peptide with Both Superoxide Dismutase and Glutathione Peroxidase Activities

  • Zou, Xian-Feng;Ji, Yue-Tong;Gao, Gui;Zhu, Xue-Jun;Lv, Shao-Wu;Yan, Fei;Han, Si-Ping;Chen, Xing;Gao, Chang-Cheng;Liu, Jun-Qiu;Luo, Gui-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2010
  • Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide was converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) that displayed both SOD and GPX activities, and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by the xanthine oxidase (XOD)/xanthine/$Fe^{2+}$ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.

Some Aspects of functional foods and their perspective (건강기능성 식품의 현황 및 전망)

  • Lee, Gun-Soon
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.17-40
    • /
    • 2004
  • The purpose of this paper is to explore some aspects of functional foods and to give an prospective view of the foods. Recently the increasing rate of old ages is very rapid so that the functional foods is demanded as the treatment of cure and health foods for the old ages. Those are the foods which includes such elements as polyphenol, vitamin E & C, 𝛽-carotene, selenium, lycopene, lutein, isoflavon, capsaicin, DHA, lecithin, peptide, dietry fiber, alginic acid, lactic ferments, caffeine, kitin and kitosan, taurine, and phenylalanine. The total amounts of those foods are $ 112 billion in 2001, the American market marks $36.3 billion (32%) and Europe marks $32.6 billion (29%) and Japan marks $27.1 billion (24%), however, Korea marks $11 billion which equivalent to 1%. We are in need to develop the new foods for the antioxidant effect, anti-cancer, the prevention of cardio vascular disease, the control of intestine vacillius, control of diabetes, with those functional elements in order to secure the world market for the functional foods.

Membrane-Associated Hexavalent Chromium Reductase of Bacillus megaterium TKW3 with Induced Expression

  • Cheung K.H.;Lai H.Y.;Gu Ji-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.855-862
    • /
    • 2006
  • Hexavalent chromium ($Cr^{6+}$) is a highly harmful pollutant, which can be detoxified and precipitated through reduction to $Cr^{3+}$. Bacillus megaterium TKW3 previously isolated from chromium-contaminated marine sediments was capable of reducing $Cr^{6+}$ in concomitance with metalloids ($Se^{4+}$, $Se^{6+}$, and $As^{5+}$). Notwithstanding approximately 50% inhibition, it was the first report of simultaneous bacterial reduction of $Cr^{6+}$ and $Se^{4+}$ (to elemental Se). No significant difference was observed among electron donors (glucose, maltose, and mannitol) on $Cr^{6+}$ reduction by B. megaterium TKW3. The reduction was constitutive and determined to be non-plasmid mediated. Peptide mass fingerprints (PMF) revealed a novel aerobic membrane-associated reductase with $Cr^{6+}$-induced expression and specific reductive activity (in nmol $Cr^{6+}$/mg protein/min) of 0.220 as compared with 0.087 of the soluble protein fraction. Respiratory inhibitor $NaN_3$ did not interfere with the reductase activity. Transmission electron microscopy with energy dispersive X-ray (TEM-EDX) analysis confirmed the aggregation of reduced chromium along the intracellular membrane region. Future identification of the N-terminal amino acid sequence of this reductase will facilitate purification and understanding of its enzymatic action.