Browse > Article

Membrane-Associated Hexavalent Chromium Reductase of Bacillus megaterium TKW3 with Induced Expression  

Cheung K.H. (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong)
Lai H.Y. (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong)
Gu Ji-Dong (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 855-862 More about this Journal
Abstract
Hexavalent chromium ($Cr^{6+}$) is a highly harmful pollutant, which can be detoxified and precipitated through reduction to $Cr^{3+}$. Bacillus megaterium TKW3 previously isolated from chromium-contaminated marine sediments was capable of reducing $Cr^{6+}$ in concomitance with metalloids ($Se^{4+}$, $Se^{6+}$, and $As^{5+}$). Notwithstanding approximately 50% inhibition, it was the first report of simultaneous bacterial reduction of $Cr^{6+}$ and $Se^{4+}$ (to elemental Se). No significant difference was observed among electron donors (glucose, maltose, and mannitol) on $Cr^{6+}$ reduction by B. megaterium TKW3. The reduction was constitutive and determined to be non-plasmid mediated. Peptide mass fingerprints (PMF) revealed a novel aerobic membrane-associated reductase with $Cr^{6+}$-induced expression and specific reductive activity (in nmol $Cr^{6+}$/mg protein/min) of 0.220 as compared with 0.087 of the soluble protein fraction. Respiratory inhibitor $NaN_3$ did not interfere with the reductase activity. Transmission electron microscopy with energy dispersive X-ray (TEM-EDX) analysis confirmed the aggregation of reduced chromium along the intracellular membrane region. Future identification of the N-terminal amino acid sequence of this reductase will facilitate purification and understanding of its enzymatic action.
Keywords
Bacillus megaterium; bioremediation; chromate reductase; metalloid; proteomics; selenium;
Citations & Related Records

Times Cited By Web Of Science : 15  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ackerley, D. F., C. F. Gonzalez, M. Keyhan, R. Blake II, and A. Matin. 2004. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol. 6: 851-860   DOI   ScienceOn
2 Camargo, F. A. O., B. C. Okeke, F. M. Bento, and W. T. Frankenberger. 2003. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by $Cu^{2+}$. Appl. Microbiol. Biotechnol. 62: 569-573   DOI
3 Ehrlich, H. L. 2002. Geomicrobiology, p. 768. 4th Ed. Marcel Dekker, New York, U.S.A
4 Park, C. H., M. Keyhan, B. Wielinga, S. Fendorf, and A. Matin. 2000. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol. 66: 1788-1795   DOI
5 Shen, H. and Y.-T. Wang. 1993. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol. 59: 3771-3777
6 Urone, P. F. 1955. Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents. Analyt. Chem. 27: 1354-1355   DOI
7 Park, C.-H., D. Gonzalez, D. Ackerley, M. Keyhan, and A. Matin. 2002. Molecular engineering of soluble bacterial proteins with chromate reductase activity, pp. 103-111. In M. Pellei, A. Porta, and R. E. Hinchee (eds.), Remediation and Beneficial Reuse of Contaminated Sediments, vol. 3. Batelle Press, Columbus, Ohio
8 Suzuki, T., N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, and M. Okazaki. 1992. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174: 5340-5345   DOI
9 Daniels, L., R. S. Hanson, and J. A. Phillips. 1994. Chemical analysis, pp. 512-554. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Kried (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC
10 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Small scale preparations of plasmid DNA, pp. 1.25-31. In N. Ford, C. Nolan, and M. Ferguson (eds.), Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, U.S.A
11 Spiers, A. J., A. Buckling, and P. B. Rainey. 2000. The causes of Pseudomonas diversity. Microbiology 146: 2345-2350   DOI
12 Kato, H. J. and H. Ohtake. 1991. Effects of heavy metal cations on chromate reduction by Enterobacter cloacae strain HO1. J. Gen. Appl. Microbiol. 37: 519-522   DOI
13 Wang, P.-C., T. Mori, K. Toda, and H. Ohtake. 1990. Membrane-associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172: 1670-1672   DOI
14 Wang, Y. 2003. Isolation and characterization of environmental Vibrio species from Mai Po Nature Reserve, Hong Kong. M.Phil. Thesis. Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
15 Blake II, R. C., D. M. Choate, S. Bardhan, N. Revis, L. L. Barton, and T. G. Zocco. 1993. Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem. 12: 1365-1376   DOI
16 Cheung, K. H. and J.-D. Gu. 2003. Reduction of chromate ($CrO_{4}^{2-}$) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52: 1523-1529   DOI   ScienceOn
17 Ishibashi, Y., C. Cervantes, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268-2270
18 Gu, J.-D., R. Mitchell, B. Mitton, and T. E. Ford. 1998. Microbial degradation of polymeric protective coatings determined by the electrochemical impedance spectroscopy. Biodegradation 9: 39-45   DOI   ScienceOn
19 Ryan, M. P., D. E. Williams, R. J. Chater, B. M. Hutton, and D. S. McPhail. 2002. Why stainless steel corrodes. Nature (London) 415: 770-774   DOI   ScienceOn
20 Gibb, H. J., P. S. J. Lees, P. F. Pinsky, and B. C. Rooney. 2000. Lung cancer among workers in chromium chemical production. Am. J. Industr. Med. 38: 115-126   DOI   ScienceOn
21 Charity, J. C., K. Pak, C. F. Delwiche, and S. W. Hutcheson. 2003. Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: From transposed gene cassettes. Molec. Plant-Microbe Interact. 16: 495-507   DOI   ScienceOn
22 Cheung, K. H. and J.-D. Gu, 2005. Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. World J. Microbiol. Biotechnol. 21: 213-219   DOI
23 Kwak, Y. H., D. S. Lee, and H. B. Kim. 2003. Vibrio harveyi nitroreductase is also a chromate reductase. Appl. Environ.Microbiol. 69: 4390-4395   DOI
24 Ackerley, D. F., C. F. Gonzalez, C. H. Park, R. Blake II, M. Keyhan, and A. Matin. 2004. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl. Environ. Microbiol. 70: 873-882   DOI
25 Michel, C., M. Brugna, C. Aubert, A. Bernadac, and M. Bruschi. 2001. Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 55: 95-100   DOI
26 Zehr, J. P. and R. S. Oremland. 1987. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol. 53: 1365-1369
27 Xu, X.-R., H.-B. Li, X.-Y. Li, and J.-D. Gu. 2004. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57: 609-613   DOI   ScienceOn
28 Turick, C. E., W. A. Apel, and N. S. Carmiol. 1996. Isolation of hexavalent chromium-reducing anaerobes from hexavalentchromium- contaminated and noncontaminated environments. Appl. Microbiol. Biotechnol. 44: 683-688   DOI
29 Venitt, S. and L. S. Levy. 1974. Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis. Nature (London) 250: 493-495   DOI   ScienceOn