최근 4차 산업혁명으로 빅데이터의 성장과 가치는 지속적으로 증가하고 있으며, 정부에서도 공공데이터 개방과 활용에 적극적으로 노력하고 있다. 하지만 여전히 시민들의 공공데이터 활용 요구수준에는 미치지 못하는 상황이며, 현 시점에서 공공데이터 분야의 연구동향 파악과 발전 방향을 모색할 필요가 있다. 이에 본 연구에서는 공공데이터와 관련된 연구 동향을 파악하기 위해서 텍스트 마이닝 기법에서 주로 활용되는 토픽 모델링을 활용하여 분석하였다. 이를 위해 국내외 학술논문 중 '공공데이터', 'Public Data'의 키워드가 포함된 논문(국내 1,437건, 국외 9,607건)을 수집하여 LDA 알고리즘 기반의 토픽 모델링을 수행하였으며, 국내외 공공데이터 연구 동향을 비교 분석하여 정책적 시사점을 제시하였다. 분석 결과 국내의 경우 공공분야 정책 연구가 주를 이루고 있으며, 국외는 의료, 건강 관련 연구가 높게 나타났다. 토픽별 시계열로 살펴보면 국내는 '개인정보보호', '공공데이터 관리', '도시 환경' 분야의 연구가 증가하였으며, 국외는 '도시정책', '세포 생물학', '딥러닝', '클라우드·보안' 분야 연구가 활성화되고 있음을 확인할 수 있었다.
Smartphone usage has become so common that it has reached 2 billion people in the last year. As a result of this, hospitals have started making use of smartphones at various medical sites and research services for patients. This study aimed to establish support for developing a long distance program for patients with implants who have difficulty visiting clinics or with busy modern lives, by using smartphones for oral hygiene management instruction. The data were collected for 12 weeks, from July 24 to October 21, 2015, for patients who agreed to participate in the study. Although the subjects found the process of transferring photos via smartphone to be cumbersome (75%), the satisfaction level of the oral hygiene management program was excellent for all participating patients, and they all wanted to continue with further management using this process. The results from the phone satisfaction survey showed that oral hygiene self-management after oral hygiene control training by smartphones was mostly equal to previous habits (87.5%) or had partially increased but had not decreased. The need for data on more varied age groups and the issues of protecting the security of personal information on smartphones require further study. However, our study confirmed the efficacy of using electronic media (smartphones) for oral hygiene management in patients with a dental implant due to their improvement of oral hygiene performance as evidenced by less bleeding from probing on post-program visit.
최근 태풍, 지진, 산불, 산사태, 전쟁 등 다양한 재난 상황으로 인한 인명피해와 자금 손실이 꾸준히 발생하고 있고 현재 이를 예방하고 복구하기 위해 많은 인력과 자금이 소요되고 있는 실정이다. 이러한 여러 재난 상황을 미리 감시하고 재난 발생의 빠른 인지 및 대처를 위해 본 논문에서는 인공지능 기반의 재난 드론 시스템을 설계 및 개발하였다. 본 연구에서는 사람이 감시하기 힘든 지역에 여러 대의 재난 드론을 이용하며 딥러닝 기반의 객체 인식 알고리즘과 최적 경로 탐색 알고리즘을 적용해 각각의 드론이 최적의 경로로 효율적 탐색을 실시한다. 또한 드론의 근본적 문제인 배터리 용량 부족에 대한 문제점을 해결하기 위해 Ant Colony Optimization (ACO) 기술을 이용하여 각 드론의 최적 경로를 결정하게 된다. 제안한 시스템 구현을 위해 여러 재난 상황 중 산불 상황에 적용하였으며 전송된 데이터를 기반으로 산불지도를 만들고, 빔 프로젝터를 탑재한 드론이 출동한 소방관에게 산불지도를 시각적으로 보여주었다. 제안한 시스템에서는 여러 대의 드론이 최적 경로 탐색 및 객체인식을 동시에 수행함으로써 빠른 시간 내에 재난 상황을 인지할 수 있다. 본 연구를 바탕으로 재난 드론 인프라를 구축하고 조난자 탐색(바다, 산, 밀림), 드론을 이용한 자체적인 화재진압, 방범 드론 등에 활용할 수 있다.
최근 국내 자연 및 사회재해가 증가하고 있으며, 코로나19, 싱크홀 등 새로운 재난과 자연재해와 사회재난이 결합된 대규모 재난이 빈번하게 발생하고 있다. 재난으로 인한 피해를 감소시키고 재난에 효과적으로 대응하기 위해서는 재난상황에 대한 인식과 기능적 대처과정을 숙지해야 하므로 재난안전교육의 중요성이 대두되고 있다. 행정안전부는 54개 전문 재난안전교육기관을 통해 재난안전 종사자를 대상의 재난안전교육을 실시하고 있으나 표준재난안전교육과정의 부재로 기관별로 다른 커리큘럼을 운영하고 있으며 기관별 교육내용이 중복되고, 재난안전체험시설도 부족하다. 이는 재난안전요원이 실제 재난현장에 대한 경험이 부족하여 재난에 효과적으로 대응하기 어렵게 만든다는 문제점이 있다. 또한 다른 교육 분야와 달리 재난안전교육 콘텐츠 분야와 인공지능(AI) 등 신기술 간의 연계가 아직 부족한 실정이다. 따라서 본 연구에서는 자연재난을 중심으로 국내 재난안전교육기관 및 내용의 현황과 문제점을 조사 및 분석하였다. 이를 바탕으로 통일된 재난안전 표준 교육과정 수립, 가상현실 기술 및 인포테인먼드 기술을 활용한 재난안전교육 체험 콘텐츠 제작 및 보급, 모바일 AI 튜터링 서비스 개발 등의 국내 재난안전교육 콘텐츠의 개선방안을 제시하였다.
V2X를 활용한 자율주행차량은 기존의 자율주행차량보다 더욱 많은 정보를 바탕으로 자율주행차량의 센서 커버리지 밖의 영역의 정보를 통하여 안전한 주행이 가능하다. V2X 기술이 자율주행차량의 핵심 구성 요소로 부각되면서 V2X 보안 문제에 대해 연구가 활발히 진행되고 있지만 자율주행차량이 V2X의 의존도가 높은 자율주행시스템에서 V2X 통신의 고장으로 인한 위험성에 대한 부분은 상대적으로 부각되고 있지 않으며 관련 연구도 미진한 편이다. 본 논문에서는 자율주행차량의 교차로 시나리오를 제시하여 V2X를 활용한 자율주행시스템의 서비스 시나리오를 정의 하였으며 이를 기반으로 기능을 도출하고 V2X의 위험 요인을 분석하여 오작동을 정의하였다. ISO26262 Part3 프로세스를 활용하여 HARA 및 고장 주입 시나리오의 시뮬레이션을 통해 V2X 모듈의 고장으로 인한 위험성과 이를 확인하는 검증 과정을 제시하였다.
최근 실감형 가상공간 기술인 메타버스(Metaverse) 기술이 화두가 되고 있다. 하지만, 메타버스 환경에 대한 제도적 체계가 미흡해서 메타버스 내 생산, 저장, 가공, 이전되는 디지털 자산을 포함한 산업기밀 유출 문제에 대한 우려가 대두되고 있다. 사이버 공간의 해킹 공격을 방어하기 위한 디지털 포렌식 기술은 메타버스 공간에서 활용이 불가하고, 피해 범위 산정 및 책임 추적의 근거가 마련되어 있지 않아서 인력 유출 및 사이버 해킹에 대한 효과적인 대응이 어렵다. 본 논문에서는 메타버스에서 발생 가능한 산업기밀 정보의 범위와 유출 시나리오를 정의하고, 메타버스 내 유출 시나리오 별 발생가능한 문제점을 기반으로 메타버스 시대의 산업기밀 유출 대응을 위한 정책적·제도적 방안을 제안한다. 연구결과, 메타버스 내 산업기밀 유출 대응을 위해서는 역외 압수·수색 문제에 대한 표준화된 법률 마련 및 가상화폐 증거 수집 제도 마련이 필요한 실정임을 확인할 수 있었다. 본 연구를 통해 메타버스 기술에서 발생 가능한 문제에 사전 대비를 함으로써 산업 기술 발전에 기여할 수 있을 것이다.
최근의 테러의 양상은 수단, 대상, 지역 등에 있어 다양한 특징이 있다. 특히 2001년 발생한 미국 911 테러로 인해 각국의 테러에 대한 패러다임이 바뀌었으며, 한국도 이에 동참하여 2016년부터 테러방지법을 제정·시행하고 있다. 이를 기반으로 화생방테러가 일반테러에 포함되어 경찰청에서 컨트롤타워 역할을 수행하며 환경부 등 관련 유관기관에서 지원하는 체계가 구축·운용 중이다. 하지만 경찰 내 화생방테러에 대비한 조직체계, 인력구성, 운용 중인 장비·물자 등에서 제한사항이 확인하였다. 이를 바탕으로 화생방테러 역량을 강화할 수 있는 개선방안으로 경찰청 내 화생방테러 전담조직 및 연구조직의 신설, 화생방테러 특성에 맞는 전자식 장비의 확충등을 제안하였다. 화생방테러 대응의 한계를 극복하기 위해 제시된 개선방향을 통해 경찰의 현장대응역량이 강화될 수 있을 것으로 기대된다.
사물인터넷 등을 통하여 각종 기기들이 인터넷으로 연결되어 있고 이로 인하여 인터넷을 이용한 공격이 발생하고 있다. 그러한 공격 중 악성 URL를 이용하여 사용자에게 잘못된 피싱 사이트로 접속하게 하거나 악성 바이러스를 유포하는 공격들이 있다. 이러한 악성 URL 공격을 탐지하는 방법은 중요한 보안 이슈 중에 하나이다. 최근 딥러닝 기술 중 뉴럴네트워크는 이미지 인식, 음성 인식, 패턴 인식 등에 좋은 성능을 보여주고 있고 이러한 뉴럴네트워크를 이용하여 악성 URL 탐지하는 분야가 연구되고 있다. 본 논문에서는 뉴럴네트워크를 이용한 악성 URL 탐지 성능을 각 파라미터 및 구조에 따라서 성능을 분석하였다. 뉴럴네트워크의 활성화함수, 학습률, 뉴럴네트워크 모델 등 다양한 요소들에 따른 악성 URL 탐지 성능에 어떠한 영향을 미치는 지 분석하였다. 실험 데이터는 Alexa top 1 million과 Whois에서 크롤링하여 데이터를 구축하였고 머신러닝 라이브러리는 텐서플로우를 사용하였다. 실험결과로 층의 개수가 4개이고 학습률이 0.005이고 각 층마다 노드의 개수가 100개 일 때, 97.8%의 accuracy와 92.94%의 f1 score를 갖는 것을 볼 수 있었다.
전 세계적으로 사이버 공격은 계속 증가해 왔으며 그 피해는 정부 시설을 넘어 민간인들에게 영향을 미치고 있다. 이러한 문제로 사이버 이상징후를 조기에 식별하여 탐지할 수 있는 시스템 개발의 중요성이 강조되었다. 위와 같이, 사이버 이상징후를 효과적으로 식별하기 위해 BGP(Border Gateway Protocol) 데이터를 머신러닝 모델을 통해 학습하고, 이를 이상징후로 식별하는 여러 연구가 진행되었다. 그러나 BGP 데이터는 이상 데이터가 정상 데이터보다 적은 불균형 데이터(Imbalanced data)이다. 이는, 모델에 학습이 편향된 결과를 가지게 되어 결과에 대한 신뢰성을 감소시킨다. 또한, 실제 사이버 상황에서 보안 담당자들이 머신러닝의 정형적인 결과로 사이버 상황을 인식시킬 수 없는 한계도 존재한다. 따라서 본 논문에서는 전 세계 네트워크 기록을 보관하는 BGP(Border Gateway Protocol)를 조사하고, SMOTE(Synthetic Minority Over-sampling Technique) 활용해 불균형 데이터 문제를 해결한다. 그 후, 사이버 공방(Cyber Range) 상황을 가정하여, 오토인코더를 통해 사이버 이상징후 분류하고 분류된 데이터를 가시화한다. 머신러닝 모델인 오토인코더는 정상 데이터의 패턴을 학습시켜 이상 데이터를 분류하는 성능을 92.4%의 정확도를 도출했고 보조 지표도 90%의 성능을 보여 결과에 대한 신뢰성을 확보한다. 또한, 혼잡한 사이버 공간을 가시화하여 효율적으로 상황을 인식할 수 있기에 사이버 공격에 효과적으로 방어할 수 있다고 전망된다.
침입 탐지 시스템(IDS: Intrusion Detection System)은 보안을 침해하는 이상 행위를 탐지하는 기술로서 비정상적인 조작을 탐지하고 시스템 공격을 방지한다. 기존의 침입탐지 시스템은 트래픽 패턴을 통계 기반으로 분석하여 설계하였다. 그러나 급속도로 성장하는 기술에 의해 현대의 시스템은 다양한 트래픽을 생성하기 때문에 기존의 방법은 한계점이 명확해졌다. 이런 한계점을 극복하기 위해 다양한 기계학습 기법을 적용한 침입탐지 방법의 연구가 활발히 진행되고 있다. 본 논문에서는 다양한 네트워크 환경의 트래픽을 시뮬레이션 장비에서 생성한 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 이상(Anomaly) 탐지 정확도를 높일 수 있는 데이터 전처리 기법에 관한 비교 연구를 진행하였다. 데이터 전처리로 패딩(Padding)과 슬라이딩 윈도우(Sliding Window)를 사용하였고, 정상 데이터 비율과 이상 데이터 비율의 불균형 문제를 해결하기 위해 AAE(Adversarial Auto-Encoder)를 적용한 오버샘플링 기법 등을 적용하였다. 또한, 전처리된 시퀀스 데이터의 특징벡터를 추출할 수 있는 Word2Vec 기법 중 Skip-gram을 이용하여 탐지 정확도의 성능 향상을 확인하였다. 비교실험을 위한 모델로는 PCA-SVM과 GRU를 사용하였고, 실험 결과는 슬라이딩 윈도우, Skip-gram, AAE, GRU를 적용하였을 때, 더 좋은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.