• Title/Summary/Keyword: secretory expression

Search Result 189, Processing Time 0.026 seconds

Screening of genes differentially expressed in cultured human periodontal ligament cells and human gingival fibroblasts (배양된 치주인대세포와 치은섬유아세포에서 상이하게 발현된 유전자들의 검토 양상)

  • Yoon, Hye-Jeong;Choi, Mi-Hye;Yeo, Shin-II;Park, Jin-Woo;Choi, Byung-Ju;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.613-625
    • /
    • 2006
  • Periodontal ligament(PDL) cells and human gingival fibroblasts(HGFs) play important roles in development, regeneration, normal function, and pathologic alteration. PDL cells and HGFs have the similarity related with general characteristics of fibroblast such as spindle shaped morphology, the presence of vimentin intermediate filament and the synthesis of interstitial collagens and fibronectin. There were many studies about the differences between PDL cells and HGFs, but they were not about whole gene level. In this study, we tried to explain the differences of gene expression profiles between PDL cells and HGFs, and the differences among three individuals by screening gene expression patterns of PDL cells and HGFs, using cDNA microarray. Although there were some variants among three experiments, a set of genes were consistentely and differentially expressed in one cell type. Among 3,063 genes, 49 genes were more highly expressed in PDL cells and 12 genes were more highly expressed in HGFs. The genes related with cell structure and motility were expressed more highly in PDL cells. These are cofilin 1, proteoglycan 1 secretory granule, collagen type I(${\alpha}$ 1), adducin gamma subunit, collagen type III(${\alpha}$ 1), fibronectin, lumican(keratan sulfate proteoglycan), and ${\alpha}$ -smooth muscle actin. Tissue inhibitor of metalloproteinase known as the enzyme controlling extracellular matrix with matrix metalloproteinase is more highly expressed in PDL cells, osteoprotegerin known as osteoclastogenesis inhibitory factor is more highly expressed in HGFs. We performed northern blot to verify cDNA microarray results on selected genes such as tissue inhibitor of metalloproteinase, fibronectin, osteoprogeterin. The result of northern blot analysis showed that each cell expressed the genes in similar pattern with cDNA microarray result. This result indicates that cDNA microarray is a reliable method in screening of gene expression profiles.

Effect of Melandrii Herba, Akebia Quinata Decaisne, and Tetrapanax Papyriferus on Milk Secretion and Lactation Related Factors in Postpartum Mice (왕불유행, 목통, 통초가 산후 생쥐의 유즙분비량과 유즙분비 관련 인자에 미치는 영향)

  • Lee, Chia-Wei;Lee, Eun-Hee;Lee, Chang-Hyun;Kim, Hong-Jun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.31 no.2
    • /
    • pp.1-17
    • /
    • 2018
  • Objectives: The purpose of this study is to investigate the effect of Melandrii Herba (MH), Akebia Quinata Decaisne (AQ), and Tetrapanax Papyriferus (TP) on milk secretion and aquaporin (AQP) expression in lactating mice. Methods: For the experiment, the mice were divided into three groups, which were orally administered MH (2,720 mg/kg), TP (400 mg/kg) and AQ (2,800 mg/kg) extracts respectively for 3 weeks from Day 1 after the birth, compared with the control group (C group), which was administered distilled water. A group consisted of six infantile mice per postpartum mouse. For comparison with the C group, non-pregnant SKH-1 mice were used as the virgin group. Results: 1. When it comes to the immunohistochemical staining for prolactin receptors in the mammary glands, the AQ and MH groups showed a strong immune response to the secretory epithelial cells constituting the mammary alveoli, while the TP group represented a weaker immune response. 2. In the immunohistochemical staining for AQP in the mammary glands, AQP1 showed a strong immune response in the walls of capillaries and venules around the mammary alveoli, and AQP3 in the epithelial cells constituting the mammary alveoli, and AQP5 in some tissues between the mammary alveoli. AQP1 was expressed in the order of TP group>AQ group=C group>MH group, and AQP3 was MH group and AQ group>TP group=C group, and AQP5 was MH group>C group>AQ group and TP group. 3. In the Western blot, AQP1 was expressed in the order of TP group>AQ group>C group>MH group, and AQP3 was MH group>AQ group>C group>TP roup, and AQP5 was MH group>TP Group>C group>AQ group. All of AQP1, 3, 5 expression were significantly higher in the C group than in the Virgin group. Conclusions: The administration of Akebia Quinata Decaisne, Tetrapanax Papyriferus and Melandrii Herba have the effect of improving prolactin levels in postpartum mice and increasing the expression of prolactin receptor and AQPs in the mammary glands, suggesting that lactation might be enhanced by the development of the mammary glands.

Repression of CCSP Expression by KLF4 (KLF4에 의한 CCSP 발현 억제)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1432-1437
    • /
    • 2018
  • Clara cell secretory protein (CCSP) plays an important role in protecting the lungs from inflammation. This research focuses on identifying the cis-element for binding the repressor of CCSP gene expression. A DNase I footprinting experiment revealed three protected regions between -812 and -768 bp (45 bp) of the mCCSP promoter. One motif (D3: GCCTGGGAA) was 100% conserved across rat, hamster, and human. The addition of excess amounts of the D3 motif exhibited high competition within that 45 bp range in an electrophoretic mobility shift assay. However, when mutated D3 ($G{\underline{AA}}TG{\underline{TT}}AA$) was used, the competition was significantly reduced. This demonstrates that the D3 motif within that 45 bp region of the mCCSP promoter is an important site for the protein-DNA interaction. Transient transfection assays with -756 Luc resulted in highly decreased expression of CCSP than those with -812 Luc, suggesting that the 45 bp could function as a binding site for the repressor. Co-transfection of KLF4 exhibited significant repression of the -812 Luc but not the -768 Luc which clearly shows that KLF4 might function as a repressor for the CCSP gene and also suggests that the D3 motif is strongly involved in the binding of KLF4. In addition, when anti-KLF4 antibody was added, super-shifted bands were observed. This result demonstrates that KLF4 could function as a repressor by binding to this 45 bp region of the CCSP promoter and that the D3 motif might be involved in the specific binding of KLF4.

Cellular Aging Inhibitory Effect of Perilla Leaf Extract on D-Galactose Induced C2C12 Myoblasts (D-갈락토스 유도 C2C12 근원세포에 대한 자소엽 추출물의 세포 노화 억제 효과)

  • Song-Mi Park;Sung-Woo Cho;Yung-Hyun Choi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.2
    • /
    • pp.15-28
    • /
    • 2024
  • Objectives We used the D-galactose (D-gal) induced C2C12 myoblast senescence model to investigate whether ethanol extract of Perilla. fructescens leaves (EEPF) could delay cellular senescence and regulate related mechanisms. Methods C2C12 myogenic cells were cultured in an incubator under 37 ℃ and 5% CO2 conditions. EEPF, dried perilla leaves were pulverized and extracted at 1:10 (v/v) at 50 ℃ for 4 hours. Cell counting kit-8 and western blot analysis was performed. Annexin V-FITC apoptosis detection kit and DAPI staining was applied. Catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and malondialdehyde analysis kits were used. To measure the level of reactive oxygen species generation, staining and flow cytometry was used. To analyze the mitochondrial activity, membrane potential changes were measured using JC-1. 𝛽-gal activity was analyzed using SA-𝛽-gal staining solution, and DNA damage was analyzed by using 𝛾-H2AX. Quantikine ELISA kit was used to analyze inflammatory cytokine production. Results According to the results of this study, EEPF significantly alleviated the decrease in cell viability in C2C12 cells treated with D-gal and suppressed the decrease in the expression of proliferating cell nuclear antigen. EEPF also markedly blocked D-gal-induced C2C12 cell apoptosis and restored reduced activity of CAT, GSH-Px, T-AOC, SOD. In addition, EEPF suppressed the decrease in 𝛽-galactosidase activity, the induction of DNA damage and the increase in expression of senescence-associated secretory phenotype proteins such as p16, p53 and p21 in D-gal-treated C2C12 cells. Furthermore, EEPF significantly attenuated D-gal-induced production and expression of inflammatory cytokines such as interleukin (IL)-6 and IL-18. Conclusions The results of this study indicate that EEPF can be used as a potential candidate for the prevention and treatment of muscle aging.

Molecular Characterization of A Glycine and Proline-rich Antibacterial Protein from Larvae of A Beetle, Protaetia brevitarsis

  • Hwang, Jae-Sam;Kim, Seong-Ryul;Kang, Heui-Yun;Yun, Eun-Young;Ahn, Mi-Young;Park, Kwan-Ho;Jeon, Jae-Pil;Kim, Mi-Ae;Kim, Nam-Jung;Hwang, Seok-Jo;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.83-85
    • /
    • 2007
  • A glycine and proline-rich antibacterial protein was cloned from larvae of a beetle, Protaetia brevitarsis. The DNAs encoded a deduced propeptide of 127 amino acid residues with predicted molecular weight of 14.0 kDa and PI of 7.89. Structural analysis of this protein indicated the presence of a recognition sequence for the cleavage site within the constitutive secretory pathway(Arg-Xaa-Lys/Arg-Arg), suggesting that mature portion(72 amino acid residues) is produced by cleavage of signal peptide and propeptide from 127 amino-acid-long precursor protein. Mature portion sequence of this protein showed 72% similarity to that of Oryctes rhinoceros Rhinocerosin and 91% to that of Holotrichia diomphalia holotricin 2. The mRNA expression was reached the highest level at 4 hrs after E. coli injection and then declined gradually.

Induction of Apoptosis in Chicken Oviduct Cells by C2-Ceramide

  • Kim, Sung Hak;Choi, Ji Young;Sihn, Choon-Ryoul;Suh, Eun Jung;Kim, Sun Young;Choi, Kang Duk;Jeon, Iksoo;Han, Jae Yong;Kim, Tae-Yoon;Kim, Sang Hoon
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • The chicken oviduct is a dynamic organ that produces secretory proteins such as ovalbumin and its cells undergo cell proliferation and differentiation. There has been no study of the cellular mechanism involved in cell death in the chicken oviduct. Therefore, this study has focused on the study of apoptosis in primary oviduct cells. Because ceramide is known to activate apoptosis in tumor cells and is produced in the oviduct, we used an exogenous ceramide analog to induce cell death. The viability of ceramide-treated chicken oviduct cells decreased in a dose-dependent manner and apoptotic cells were detected by staining with annexin V. The expression of apoptosis-related genes was assessed by RT-PCR and bcl-2 mRNA was found to decrease after exposure to ceramide while Bcl-x mRNA increased 12 h post-treatment. In addition, caspase-3 was expressed strongly in the early stages of apoptosis, while caspase-1 and -9 transcripts increased at later times. We conclude that ceramide induces apoptosis in oviduct-derived primary cells via a caspase- and bcl-2-dependent pathway.

Expression on Echinostoma hortense Infection Manifestation on the Cytokine of the Splenocytes of BALB/c and C3H/HeN Mice

  • Ryang Yong-Suk;Cho Yoon-Kyung;IM Jee-Aee;Lee Kyu-Je;Kim Insik;Sung Ho-Joong
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.219-230
    • /
    • 2004
  • This experiment was performed to examine the in vitro and in vivo affects of the two different haplotype strains of mice, BALB/c and C3H/HeN infected with Echinostoma hortense, and the manifestation of the profiles of cytokine in the splenocytes. In the in vitro experiment, the two mice's splenocytes were divided and stimulated with antigen of crude extracts and the antigen of excretory and secretory products of an adult warm and the manifestation of cytokine mRNA was verified with RT-PCR. As a result, the two different strains of mice both strongly manifested the Th2 cytokine rather than the Thl cytokine and in the case of the Th2 cytokine, the BALB/c mice manifested more strongly than the C3H/HeN mice. In the experiment using the ELISA method, the protem cytokine manifestation had the same result as the mRNA experiment. In the in vivo experiment, the mice was infected via oral route with the metacercaria of the Echinostoma hortense and the manifestation of cytokine was verified by RT-PCR and ELISA and the results were the same as the in vitro experiment. Therefore, in the two strains of BALB/c and C3H/HeN, the C3H/HeN showed a higher susceptivity to the Echinostoma hortense.

  • PDF

Secretory Production of Rahnella aquatilis ATCC 33071 Levansucrase Expressed in Escherichia coli

  • KANG , SOON-AH;LEE, JAE-CHEOL;PARK, YOUNG-MIN;LEE, CHAN;KIM, SEUNG-HWAN;CHANG, BYUNG-IL;KIM, CHUL-HO;SEO, JEONG-WOO;RHEE, SANG-KI;JUNG, SUNG-JE;KIM, SANG-MOO;PARK, SEONG-KYU;JANG, KI-HYO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1232-1238
    • /
    • 2004
  • To investigate the production and characteristics of thermostable levan sucrase from Rahnella aquatilis ATCC 33071, the levan sucrase gene from R. aquatilis was cloned and expressed in Escherichia coli without induction system. Expression of levansucrase gene in E. coli had no notable or detrimental effect on the growth of host strain, and the recombinant levan sucrase exhibited levan synthesis activity. Levansucrase was secreted to the periplasm in E. coli, and addition of $0.5\%$ glycine yielded further secretion of levansucrase to the growth medium and resulted in an increase of total levansucrase activity. Furthermore, the cellular levansucrase was evaluated for the production of levan by using toluene­permeabilized whole-cells. The levansucrase was thermostable at $37^{\circ}C$. The molecular size oflevan was $1{\times}\;10^{6}$ Da, as determined by HPLC, and the degree of polymerization of levan varied with incubation temperatures: Low incubation temperature was preferable for the production of high-molecular size levan. The present study demonstrated that the mass production of levan and levan oligosaccharides can be achieved by glycine supplementation to the growth medium or by toluene­permeabilized whole-cells.

Pathogenesis and Host Interaction of Foot-and-mouth Disease (구제역의 병인론과 숙주와의 상호작용)

  • Park, Jong-Hyeon;Lee, Kwang-Nyeong;Kim, Su-Mi;Ko, Young-Joon;Lee, Hyang-Sim;Cho, In-Soo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.113-121
    • /
    • 2011
  • Foot-and-mouth disease (FMD) is a severe vesicular disease of cloven-hoofed animals including domesticated ruminants and pigs. Acute clinical signs may be mild in sheep and goats but are associated with lameness in pigs and mouth lesions with vesicles in cattle. The required condition for a successful pathogen appears to be the ability to counteract both the host innate and adaptive immune response. FMD virus (FMDV) inhibits the induction of antiviral molecules and interferes with the secretory pathway in the infected cell. The surface expression of Major Histocompatibility Complex (MHC) class I molecules is reduced in infected cells. Thus, the ability of the host to recognize and eliminate virus infected cells is decreased. Furthermore, FMDV infection results in a rapid, but transient lymphopenia, reducing the number of T and B cells, and affecting T cell function. The virus appears to premature apoptosis-mediated cell death because it has a very short replication cycle and is able to rapidly produce large amounts of virus. FMDV engages the host protective response at multiple steps to ensure its effective replication and pathogenesis. This review describes the recent pathological and immunological studies to overcome the powerful abilities of FMDV to counteract defense mechanism of host.

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • Lee, Eun-Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2007.04a
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF