DOI QR코드

DOI QR Code

Cellular Aging Inhibitory Effect of Perilla Leaf Extract on D-Galactose Induced C2C12 Myoblasts

D-갈락토스 유도 C2C12 근원세포에 대한 자소엽 추출물의 세포 노화 억제 효과

  • Song-Mi Park (Department of Korean Medicine Rehabilitation, Dong-Eui University Korean Medicine Hospital) ;
  • Sung-Woo Cho (Department of Korean Medicine Rehabilitation, Dong-Eui University Korean Medicine Hospital) ;
  • Yung-Hyun Choi (Research Institute of Korean Medicine, Dong-Eui University)
  • 박송미 (동의대학교 부속 한방병원 한방재활의학과) ;
  • 조성우 (동의대학교 부속 한방병원 한방재활의학과) ;
  • 최영현 (동의대학교 한의학연구소)
  • Received : 2024.03.23
  • Accepted : 2024.04.04
  • Published : 2024.04.30

Abstract

Objectives We used the D-galactose (D-gal) induced C2C12 myoblast senescence model to investigate whether ethanol extract of Perilla. fructescens leaves (EEPF) could delay cellular senescence and regulate related mechanisms. Methods C2C12 myogenic cells were cultured in an incubator under 37 ℃ and 5% CO2 conditions. EEPF, dried perilla leaves were pulverized and extracted at 1:10 (v/v) at 50 ℃ for 4 hours. Cell counting kit-8 and western blot analysis was performed. Annexin V-FITC apoptosis detection kit and DAPI staining was applied. Catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and malondialdehyde analysis kits were used. To measure the level of reactive oxygen species generation, staining and flow cytometry was used. To analyze the mitochondrial activity, membrane potential changes were measured using JC-1. 𝛽-gal activity was analyzed using SA-𝛽-gal staining solution, and DNA damage was analyzed by using 𝛾-H2AX. Quantikine ELISA kit was used to analyze inflammatory cytokine production. Results According to the results of this study, EEPF significantly alleviated the decrease in cell viability in C2C12 cells treated with D-gal and suppressed the decrease in the expression of proliferating cell nuclear antigen. EEPF also markedly blocked D-gal-induced C2C12 cell apoptosis and restored reduced activity of CAT, GSH-Px, T-AOC, SOD. In addition, EEPF suppressed the decrease in 𝛽-galactosidase activity, the induction of DNA damage and the increase in expression of senescence-associated secretory phenotype proteins such as p16, p53 and p21 in D-gal-treated C2C12 cells. Furthermore, EEPF significantly attenuated D-gal-induced production and expression of inflammatory cytokines such as interleukin (IL)-6 and IL-18. Conclusions The results of this study indicate that EEPF can be used as a potential candidate for the prevention and treatment of muscle aging.

Keywords

References

  1. Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The roles of mitochondrial dysfunction and reactive oxygen species in aging and senescence. Current Molecular Medicine. 2022;22(1):37-49.  https://doi.org/10.2174/1566524021666210218112616
  2. Romanello V. The interplay between mitochondrial morphology and myomitokines in aging sarcopenia. International Journal of Molecular Sciences. 2020;22(1):91. 
  3. Harman D. Aging: a theory based on free radical and radiation chemistry. The Journals of Gerontology. 1956;11(3):298-300.  https://doi.org/10.1093/geronj/11.3.298
  4. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006;160(1):1-40.  https://doi.org/10.1016/j.cbi.2005.12.009
  5. Par A, Hegyi JP, Vancsa S, Par G. Sarcopenia-2021: pathophysiology, diagnosis, therapy. Orvosi Hetilap. 2021;162(1):3-12.  https://doi.org/10.1556/650.2021.32015
  6. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. The Lancet. 2019;393(10191):2636-46.  https://doi.org/10.1016/S0140-6736(19)31138-9
  7. Funamizu T, Nagatomo Y, Saji M, Iguchi N, Daida H, Yoshikawa T. Low muscle mass assessed by psoas muscle area is associated with clinical adverse events in elderly patients with heart failure. PLoS One. 2021;16(2):e0247140. 
  8. Hepple RT. Mitochondrial involvement and impact in aging skeletal muscle. Frontiers in Aging Neuroscience. 2014;6:211. 
  9. Acosta PB, Gross KC. Hidden sources of galactose in the environment. European Journal of Pediatrics. 1995;154(7 Suppl 2):S87-92.  https://doi.org/10.1007/BF02143811
  10. Sumbalova Z, Ulicna O, Kucharska J, Rausova Z, Vancova O, Melichercik L, Tvrdik T, Nemec M, Kasparova S. D-galactose-induced aging in rats - The effect of metformin on bioenergetics of brain, skeletal muscle and liver. Experimental Gerontology. 2022;163:111770. 
  11. Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced glycation end-products in skeletal muscle aging. Bioengineering (Basel). 2021;8(11):168. 
  12. Azman KF, Zakaria R. D-Galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20(6):763-82.  https://doi.org/10.1007/s10522-019-09837-y
  13. Adam G, Robu S, Flutur MM, Cioanca O, Vasilache IA, Adam AM, Mircea C, Nechita A, Harabor V, Harabor A, Hancianu M. Applications of Perilla frutescens extracts in clinical practice. Antioxidants (Basel). 2023;12(3):727. 
  14. Ahmed HM. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules. 2018;24(1):102. 
  15. The Korean Society of Pharmacognosy Professor Association. Herbal medicine. Seoul:Younglimsa. 2016:156-7. 
  16. Tantipaiboonwong P, Pintha K, Chaiwangyen W, Suttajit M, Khanaree C, Khantamat O. Bioefficacy of Nga-Mon (Perilla frutescens) fresh and dry leaf: assessment of antioxidant, antimutagenicity, and anti-Inflammatory potential. Plants (Basel). 2023;12(11):2210. 
  17. Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfurst B, Walenta S, Mueller-Klieser W, Graler M, Hummel M, Keller U, Buck AK, Dorken B, Willmitzer L, Reimann M, Kempa S, Lee S, Schmitt CA. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature. 2013;501(7467):421-5.  https://doi.org/10.1038/nature12437
  18. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M. Cellular senescence: defining a path forward. Cell. 2019;179(4):813-27.  https://doi.org/10.1016/j.cell.2019.10.005
  19. d'Adda di Fagagna F. Living on a break: cellular senescence as a DNA-damage response. Nature Reviews Cancer. 2008;8(7):512-22. https://doi.org/10.1038/nrc2440
  20. Ebert SM, Al-Zougbi A, Bodine SC, Adams CM. Skeletal muscle atrophy: discovery of mechanisms and potential therapies. Physiology. 2019;34(4):232-9.  https://doi.org/10.1152/physiol.00003.2019
  21. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. The Journal of Physiology. 2016;594(16):4499-512.  https://doi.org/10.1113/JP271212
  22. Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A role for advanced glycation end products in molecular ageing. International Journal of Molecular Sciences. 2023;24(12):9881. 
  23. Dozio E, Vettoretti S, Lungarella G, Messa P, Corsi Romanelli MM. Sarcopenia in chronic kidney disease: focus on advanced glycation end products as mediators and markers of oxidative stress. Biomedicines. 2021;9(4):405. 
  24. Suzuki A, Yabu A, Nakamura H. Advanced glycation end products in musculoskeletal system and disorders. Methods. 2022;203:179-86.  https://doi.org/10.1016/j.ymeth.2020.09.012
  25. Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiology of Learning and Memory. 2008;90(1):19-27.  https://doi.org/10.1016/j.nlm.2008.01.010
  26. Shin IS, Hwang SJ, Kim SO, Heo D, Kim MR. Antioxidative activities of mixture of Schisandrae Fructus (SF) and Perilae Folium (PF) using natural color fixation technic. The Korea Journal of Herbology. 2011;26(3):37-45.  https://doi.org/10.6116/KJH.2011.26.3.037
  27. Liu S, Jin X, Shang Y, Wang L, Du K, Chen S, Li J, He J, Fang S, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicity and quality control of Perillae Fructus. Journal of Ethnopharmacology. 2023;304:116022. 
  28. Hou T, Netala VR, Zhang H, Xing Y, Li H, Zhang Z. Perilla frutescens: a rich source of pharmacological active compounds. Molecules. 2022;27(11):3578. 
  29. Wang J, Gao Q, Wan S, Hao J, Lian X, Ma J, Zhang X, Zheng Z, Li Q. Antiasthmatic compounds targeting β2-adrenergic receptor from Perilla frutescens improved lung inflammation by inhibiting the NF-κB signaling pathway. Journal of Natural Products. 2022;85(11):2656-66.  https://doi.org/10.1021/acs.jnatprod.2c00767
  30. Erhunmwunsee F, Pan C, Yang K, Li Y, Liu M, Tian J. Recent development in biological activities and safety concerns of perillaldehyde from perilla plants: a review. Critical Reviews in Food Science and Nutrition. 2022;62(23):6328-40.  https://doi.org/10.1080/10408398.2021.1900060
  31. Phromnoi K, Yodkeeree S, Pintha K, Mapoung S, Suttajit M, Saenjum C, Dejkriengkraikul P. Anti-osteoporosis effect of Perilla frutescens leaf hexane fraction through regulating osteoclast and osteoblast differentiation. Molecules. 2022;27(3):824. 
  32. Yuan J, Li X, Fang N, Li P, Zhang Z, Lin M, Hou Q. Perilla leaf extract (PLE) attenuates COPD airway inflammation via the TLR4/Syk/PKC/NF-κB pathway in vivo and in vitro. Frontiers in Pharmacology. 2022;12:763624. 
  33. Bae JS, Han M, Shin HS, Kim MK, Shin CY, Lee DH, Chung JH. Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. Journal of Ethnopharmacology. 2017;195:334-42.  https://doi.org/10.1016/j.jep.2016.11.039
  34. Cardano M, Tribioli C, Prosperi E. Targeting proliferating cell nuclear antigen (PCNA) as an effective strategy to inhibit tumor cell proliferation. Current Cancer Drug Targets. 2020;20(4):240-52.  https://doi.org/10.2174/1568009620666200115162814
  35. Wang SC. PCNA: a silent housekeeper or a potential therapeutic target? Trends in Pharmacological Sciences. 2014;35(4):178-86.  https://doi.org/10.1016/j.tips.2014.02.004
  36. Wang SS, Zhang X, Ke ZZ, Wen XY, Li WD, Liu WB, Zhuang XD, Liao LZ. D-galactose-induced cardiac ageing: a review of model establishment and potential interventions. Journal of Cellular and Molecular Medicine. 2022;26(21):5335-59.  https://doi.org/10.1111/jcmm.17580
  37. Azman KF, Safdar A, Zakaria R. D-galactose-induced liver aging model: its underlying mechanisms and potential therapeutic interventions. Experimental Gerontology. 2021;150:111372. 
  38. Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biology. 2022;54:102374. 
  39. Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radical Biology and Medicine. 2016;98:208-17.  https://doi.org/10.1016/j.freeradbiomed.2016.02.021
  40. Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular red-ox system in health and disease: the latest update. Biomedicine & Pharmacotherapy. 2023;162:114606. 
  41. Tian S, Zhao H, Guo H, Feng W, Jiang C, Jiang Y. Propolis ethanolic extract attenuates D-gal-induced C2C12 cell injury by modulating Nrf2/HO-1 and p38/p53 signaling pathways. International Journal of Molecular Sciences. 2023;24(7):6408. 
  42. Nousis L, Kanavaros P, Barbouti A. Oxidative stress-induced cellular senescence: is labile iron the connecting link? Antioxidants (Basel). 2023;12(6):1250. 
  43. Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging hallmarks and the role of oxidative stress. Antioxidants (Basel). 2023;12(3):651. 
  44. Shimura T. Mitochondrial signaling pathways associated with DNA damage responses. International Journal of Molecular Sciences. 2023;24(7):6128. 
  45. Jing P, Song X, Xiong L, Wang B, Wang Y, Wang L. Angelica sinensis polysaccharides prevents hematopoietic regression in D-galactose-induced aging model via attenuation of oxidative stress in hematopoietic microenvironment. Molecular Biology Reports. 2023;50(1):121-32.  https://doi.org/10.1007/s11033-022-07898-w
  46. Zhang D, Chen Y, Xu X, Xiang H, Shi Y, Gao Y, Wang X, Jiang X, Li N, Pan J. Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. Clinical and Experimental Pharmacology and Physiology. 2020;47(3):466-77.  https://doi.org/10.1111/1440-1681.13207
  47. Zhang Y, Xue W, Zhang W, Yuan Y, Zhu X, Wang Q, Wei Y, Yang D, Yang C, Chen Y, Sun Y, Wang S, Huang K, Zheng L. Histone methyltransferase G9a protects against acute liver injury through GSTP1. Cell Death & Differentiation. 2020;27(4):1243-58. 
  48. Chen Q, Xin G, Li S, Dong Y, Yu X, Wan C, Wei Z, Zhu Y, Zhang K, Wang Y, Li F, Zhang C, Wen E, Li Y, Niu H, Huang W. Berberine-mediated REDD1 down-regulation ameliorates senescence of retinal pigment epithelium by interrupting the ROS-DDR positive feedback loop. Phytomedicine. 2022;104:154181. 
  49. Ma W, Wei S, Peng W, Sun T, Huang J, Yu R, Zhang B, Li W. Antioxidant effect of Polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice. BioMed Research International. 2021;2021:6688855. 
  50. Oberdoerffer P, Miller KM. Histone H2A variants: diversifying chromatin to ensure genome integrity. Seminars in Cell & Developmental Biology. 2023;135:59-72. 
  51. Schutz CS, Stope MB, Bekeschus S. H2A.X phosphorylation in oxidative stress and risk assessment in plasma medicine. Oxidative Medicine and Cellular Longevity. 2021;2021:2060986. 
  52. Wei J, Zhang G, Zhang X, Xu D, Gao J, Fan J. Anthocyanins delay ageing-related degenerative changes in the liver. Plant Foods for Human Nutrition. 2017;72(4):425-31.  https://doi.org/10.1007/s11130-017-0644-z
  53. Lee H, Park E. Perilla frutescens extracts enhance DNA repair response in UVB damaged HaCaT cells. Nutrients. 2021;13(4):1263. 
  54. Wagner KD, Wagner N. The senescence markers p16INK4A, p14ARF/p19ARF, and p21 in organ development and homeostasis. Cells. 2022;11(12):1966. 
  55. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Frontiers in Cell and Developmental Biology. 2021;9:645593. 
  56. Chen P, Chen F, Lei J, Zhou B. Pomegranate polyphenol punicalagin improves learning memory deficits, redox homeostasis, and neuroinflammation in aging mice. Phytotherapy Research. 2023;37(9):3655-74.  https://doi.org/10.1002/ptr.7848
  57. Li J, Deng Y, Wang Y, Nepovimova E, Wu Q, Kuca K. Mycotoxins have a potential of inducing cell senescence: a new understanding of mycotoxin immunotoxicity. Environmental Toxicology and Pharmacology. 2023;101:104188. 
  58. Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15-22.  https://doi.org/10.1016/j.cyto.2019.01.013
  59. Yang H, Sun W, Fan YN, Li SY, Yuan JQ, Zhang ZQ, Li XY, Lin MB, Hou Q. Perilla leaf extract attenuates asthma airway inflammation by blocking the Syk pathway. Mediators of Inflammation. 2021;2021:6611219.