• 제목/요약/키워드: school algebra

검색결과 268건 처리시간 0.023초

컴퓨터 대수 시스템 기반의 이공계 수학용 웹 콘텐츠 개발과 형성 평가 (Development and Formative Evaluation of Web-based Contents for Engineering Mathematics Based on a Computer Algebra System)

  • 전영국;김진영;권순걸;허희옥
    • 한국학교수학회논문집
    • /
    • 제10권1호
    • /
    • pp.27-43
    • /
    • 2007
  • 본 연구의 목적은 이공계 대학생들에게 수학에 대한 동기유발과 수학학습에 도움을 주기 위하여 기반 학습 시스템을 개발하는 것이다. 이를 위하여 Mathematica와 웹 연동을 가능하게 해주는 webMathematica를 사용하여 이공계 대학생을 위한 미적분학습용 웹 콘텐츠 시스템인 MathBooster를 제작하였다. 이공계 대학생을 위한 웹 콘텐츠의 구성은 먼저 미적분의 개념을 그래프와 같은 시각화한 그림을 사용함으로써 흥미와 동기의 유발, 그리고 개념 형성을 위해 요소 지식에 관련된 내용을 수식과 텍스트로 제시하였다. 또한 단계별 풀이과정이 제시되는 예제를 제공하여 개념의 이해를 통한 응용력을 배양하도록 콘텐츠를 제공하였다. 학습자의 이해력을 확인하기 위하여 퀴즈를 제공하였으며 베이지언 네트워크를 이용하여 학습자의 퀴즈 풀이 결과에 따라 해당 콘텐츠에 대한 학습의 이해 정도를 진단하는 기능을 개발하였다. 이공계 수학용 웹 콘텐츠의 형성평가를 위하여 MathBooster에 대한 사용자의 반응, 화면구성의 적절성, 실습하기 모드의 만족도, 퀴즈, 진단결과, 피드백 만족도 등의 네 영역으로 구분하여 설문지를 작성하였다. MathBooster의 실습을 마친 이공계 학생을 대상으로 설문지를 배포하였으며 영역별로 통계 처리한 결과 MathBooster 사용에 대한 높은 만족도를 보여 주었다. 이 결과에 따라 향후 시스템을 수정보완 할 과제를 제시하였다.

  • PDF

에서 작도의 의미에 대한 고찰 (A Study on the Meaning of Construction in Euclid Elements)

  • 김창수;강정기
    • 한국학교수학회논문집
    • /
    • 제20권2호
    • /
    • pp.119-139
    • /
    • 2017
  • 고대 그리스 시대 작도는 현 교육에서의 작도 이상의 의미를 지닌 것이었다. 본 연구는 이러한 사실에 입각하여 현 교과서의 작도 의미를 살펴보고, 이와 대비되는 에서의 작도 의미를 추출해 보았다. 더불어 에서의 작도 의미를 현 교육에 반영하였을 때 나타나는 이점을 숙고해 보고, 그 이점을 활용하는 방안을 제안하였다. 그 결과 현 교과서의 작도는 삼각형의 합동 조건 도입과 이해를 위한 수단임을 확인할 수 있었다. 반면, 에서 작도는 4가지 의미를 지니고 있었다. 공준으로 타당성을 확보한 추상적 활동, 도형의 존재성 입증 및 논증에서 보조선 도입의 타당성 확보 수단, 보조선 도입 이외의 논증 개입 자제, 수와 대수를 다루는 수단이 곧 작도였다. 이로부터 논증에 보조선 도입의 타당성 확보 수단으로서의 작도 활용의 이점을 논의하였다. 아울러 Euclid 도구로 작도 불가능한 보조선에 대하여 가상적 도구의 개입에 의한 작도 관점을 제시하였다.

  • PDF

초등학생들의 범자연수 연산의 성질에 대한 이해 분석 (An Analysis of the Elementary School Students' Understanding of the Properties of Whole Number Operations)

  • 최지영;방정숙
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권3호
    • /
    • pp.239-259
    • /
    • 2011
  • 본 연구는 초등학생들의 일반화된 산술로서의 대수적 추론 능력의 실태를 알아보고자, 연산의 성질 이해 과제로 구성된 검사 도구를 이용하여 2학년 648명, 4학년 688명, 6학년 751명의 반응을 분석하였다. 분석 결과, 상당수의 학생들이 문제 상황에 포함된 연산의 성질을 제대로 파악하지 못하였고, 연산의 성질을 적용하여 문제를 해결하는 데 많은 어려움을 겪는 것으로 드러났다. 연산의 성질별로는 교환법칙 과제에서는 저학년에서부터 높은 성공률을 보인 반면, 결합법칙과 분배법칙에서는 고학년에서도 매우 낮은 성공률을 보였다. 문제 상황별로는 특히, 결합법칙 및 분배법칙 과제의 경우 구체적인 수 상황에서의 성공률이 임의의 수 상황에서의 성공률에 비해 상대적으로 더 낮게 나타났다. 이러한 결과들을 토대로 본 논문은 초등학교에서의 대수 지도 방안에 대한 시사점을 제공하였다.

  • PDF

교과서 분석에 기초한 연산법칙의 지도 방안 탐색 (Research on Teaching Method for the Properties of Arithmetic Based on Analysis of Elementary School Mathematics Textbooks)

  • 장혜원
    • 한국초등수학교육학회지
    • /
    • 제21권1호
    • /
    • pp.1-22
    • /
    • 2017
  • 연산법칙은 산술 학습을 위해 계산 원리 파악 및 효과적인 계산 전략 개발에 필수적인 것으로 간주되며, 초등학교에서 초기 대수 지도에 대한 긍정적 견해와 더불어 연산에 대한 직관적 관념 및 구조적 이해를 위해 연산법칙 자체에 대한 탐구가 요구된다. 따라서 연산법칙에 대한 이해가 부족할 경우, 연산법칙을 가정한 후속 학습시 학습 곤란과 오개념 형성을 유발할 우려가 있다. 이에 본 연구는 초등학교 수학 교과서에서 연산법칙이 다루어지는 특성을 분석함으로써 연산법칙의 바람직한 지도 방안을 탐색하는 것을 목적으로 한다. 이를 위해 우리나라 교육과정기에 따른 교과서 분석을 통해 어떤 연산법칙이 어느 시기에 어떤 방법으로 지도되어 왔는지를 비교하고 연산법칙을 가정하는 내용 전개 사례를 추출하였다. 그 결과에 대한 논의에 기초하여 초등학교 수학에서 연산법칙의 지도 필요성과 가능성을 확인하고 지도 방안에 대한 시사점을 도출하였다.

  • PDF

문자식을 포함한 대수 증명에 대한 중학교 3학년 학생들의 이해 연구 - 문맥과 문자식, 어느 것을 보는가 - (Understanding of Algebraic Proofs Including Literal Expressions: Expressions or Contexts?)

  • 장혜원;강정기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권3호
    • /
    • pp.359-374
    • /
    • 2014
  • 증명 학습과 관련하여 학생들이 경험하는 어려움과 오류는 수학교육계의 난제라 할 만하다. 증명에 대한 형식적 학습이 이루어지는 기하 영역에서뿐만 아니라 대수 증명에 대해서도 문자식의 처리나 일반성의 파악과 관련하여 어려움의 요소는 도처에서 발견된다. 본 연구에서는 두 3의 배수의 합은 3의 배수라는 명제에 대한 문자식을 포함한 증명에서 학생들이 증명의 문맥을 적절하게 이해하는가를 알아보는 데 초점을 둔다. 중학교 3학년 학생 24명을 대상으로 하여 증명 과정에 문자식이 포함되며 결론 부분은 빈 칸으로 생략되어 있는 증명을 제시하고 그 증명이 어떤 명제에 대한 증명인지 알아보도록 한 결과 반 이상의 학생이 문자식 자체에 근거하여 부적절한 응답을 하였다. 나아가 그 중 임의 추출한 세 명을 개별 면담함으로써 사고 특징을 조사하였다. 대수 증명을 식의 성립을 보이는 것으로 간주하는 증명관, 증명 수행과 이해에서의 문자식 해석의 괴리 등을 비롯한 사고 특징을 파악하고 그로부터 교육적 시사점을 도출하였다.

  • PDF

통합적 이해의 관점에서 본 고등학교 학생들의 미분계수 개념 이해 분석 (An Analysis on the Understanding of High School Students about the Concept of a Differential Coefficient Based on Integrated Understanding)

  • 이현주;류중현;조완영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제29권1호
    • /
    • pp.131-155
    • /
    • 2015
  • 본 연구의 목적은 고등학교 상위권 학생들이 미분계수 개념을 통합적으로 이해하고 있는지를 알아보는데 있다. 여기서 미분계수 개념의 통합적 이해란 미분계수의 발생맥락인 접선문제와 속도문제를 미분계수 개념과 연결하여 이해하고, 미분계수 개념, 미분계수의 대수적 기하적 표현, 미분계수를 다루는 응용 상황을 서로 유기적으로 연결하여 이해하는 것을 의미한다. 본 연구를 위하여 청주시에 소재한 S고등학교 2학년 상위권 학생 38명을 연구대상으로 선정하여 미분계수 개념의 통합적 이해 정도를 조사하였다. 통합적 이해의 관점에서 고등학교 수학II 교과서와 여러 책을 참고하여 검사지를 개발한 후 현장 교사들과 전문가의 검토를 받아 수정 보완하였다. 검사지는 총 11개의 문항으로 구성되었으며 문항 1과 2-(1)은 미분계수 개념과 대수 기하 표현의 연결을, 문항 2-(2)와 4는 미분계수 개념의 발생맥락과 미분계수 개념의 연결을, 문항3과 10은 미분계수의 대수 표현과 기하 표현의 연결을 볼 수 있도록 하였다. 문항 5~9는 미분계수의 응용상황들로 구성되었는데 문항 6은 미분계수 개념과 응용의 연결을, 문항 8은 미분계수의 응용과 대수 표현의 연결을, 문항 5와 7은 미분계수의 수학 외에서의 응용과 기하 표현의 연결을, 문항 9는 수학 내에서의 응용과 기하 표현의 연결을 볼 수 있도록 하였다. 연구 결과 미분계수의 개념과 대수 기하 표현의 연결이 잘 이루어진 학생들의 비율은 높게 나타났으나 그 외의 연결이 잘 이루어진 학생들의 비율은 거의 절반이거나 절반에 미치지 못하는 것으로 나타났다.

학교수학 교과서에서 사용하는 정의에 관한 연구 (A Study on the Definitions Presented in School Mathematics)

  • 우정호;조영미
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제11권2호
    • /
    • pp.363-384
    • /
    • 2001
  • The purpose of this thesis is, through analysing the characteristics of the definitions in Korean school mathematics textbooks, to explore the levels of them and to make suggestions for definition - teaching as a mathematising activity, Definitions used in academic mathematics are rigorous. But they should be transformed into various types, which are presented in school mathematics textbooks, with didactical purposes. In this thesis we investigated such types of transformation. With the result of this investigation we tried to identify the levels of the definitions in school mathematics textbooks. And in school mathematics textbooks there are definitions which carry out special functions in mathematical contexts or situations. We can say that we understand those definitions, only if we also understand the functions of definitions in those contexts or situations. In this thesis we investigated the cases in school mathematics textbooks, when such functions of definition are accompanied. With the result of this investigation we tried to make suggestions for definition-teaching as an intellectual activity. To begin with we considered definition from two aspects, methods of definition and functions of definition. We tried to construct, with consideration about methods of definition, frame for analysing the types of the definitions in school mathematics and search for a method for definition-teaching through mathematization. Methods of definition are classified as connotative method, denotative method, and synonymous method. Especially we identified that connotative method contains logical definition, genetic definition, relational definition, operational definition, and axiomatic definition. Functions of definition are classified as, description-function, stipulation-function, discrimination-function, analysis-function, demonstration-function, improvement-function. With these analyses we made a frame for investigating the characteristics of the definitions in school mathematics textbooks. With this frame we identified concrete types of transformations of methods of definition. We tried to analyse this result with van Hieles' theory about levels of geometry learning and the mathematical language levels described by Freudenthal, and identify the levels of definitions in school mathematics. We showed the levels of definitions in the geometry area of the Korean school mathematics. And as a result of analysing functions of definition we found that functions of definition appear more often in geometry than in algebra or analysis and that improvement-function, demonstration-function appear regularly after demonstrative geometry while other functions appear before demonstrative geometry. Also, we found that generally speaking, the functions of definition are not explained adequately in school mathematics textbooks. So it is required that the textbook authors should be careful not to miss an opportunity for the functional understanding. And the mathematics teachers should be aware of the functions of definitions. As mentioned above, in this thesis we analysed definitions in school mathematics, identified various types of didactical transformations of definitions, and presented a basis for future researches on definition teaching in school mathematics.

  • PDF

평가 문항을 활용한 중학교 수학 교육과정의 내용 및 인지행동의 위계성 조사 (Investigating the Hierarchical Nature of Content and Cognitive Domains in the Mathematics Curriculum for Korean Middle School Students via Assessment Items)

  • 송미영;김선희
    • 대한수학교육학회지:학교수학
    • /
    • 제9권2호
    • /
    • pp.223-240
    • /
    • 2007
  • 본 연구는 중학생들의 수학 성취를 국가수준에서 평가한 경험적 자료를 활용하여 우리나라 중학교 수학과 교육과정의 내용과 수학에서의 인지행동이 위계적으로 구성되어 있는지를 조사하였다. 전반적으로 교육과정의 내용 제시 순서는 난이도 순위와 통계적으로 유의한 상관관계가 나타나지 않은 반면, 인지행동의 위계는 난이도 순위와 통계적으로 유의한 상관관계가 있었다. 이러한 결과에서 검사 문항의 난이도 순위가 학교에서 배운 수학 교과 내용의 순서보다는 문항에서 요구하는 인지행동의 수준과 더 관련이 있음을 알 수 있었다. 그리고 내용 위계와 인지행동의 위계 간 상관관계가 유의하게 나타나, 교육과정에서 늦게 등장하는 내용일수록 요구되는 인지 행동도 높은 수준임을 발견할 수 있었다. 내용 및 인지행동의 위계와 난이도 순위 간 상관분석에서 특이한 양상을 나타낸 문항에 대해서는 그 특성을 분석하였다.

  • PDF

GSP를 활용한 기하수업에서 수준별 학생의 논증기하와 해석기하의 연결에 관한 연구 (A Study on the Effects of Using GSP of Level Differentiated Students in Connecting Demonstrative Geometry and Analytic Geometry)

  • 도정철;손홍찬
    • 한국학교수학회논문집
    • /
    • 제18권4호
    • /
    • pp.411-429
    • /
    • 2015
  • 본 연구에서는 기하 문제해결에서 GSP의 활용이 수준별로 학생들에게 어떤 영향을 끼치는지에 대해 알아보았고, 특히 논증기하와 해석기하의 연결성에 어떤 영향을 주었는지에 관하여 살펴보았다. 구체적으로 살펴보면 상 수준의 학생은 기하 문제를 해결하기 위해 바로 형식적인 대수적 식을 사용하는 것을 선호하였고, 중 하 수준의 학생의 경우에는 GSP의 도움을 받아 대수식을 찾고자 하는 노력을 보였다. 특히 하수준의 경우에는 문제해결에는 실패하였지만 GSP의 도움을 받아 문제를 이해할 수 있는 경우가 많았다. 논증기하와 해석기하의 연결성과 관련하여 GSP의 역동적인 환경은 형식화된 해석기하적 표현의 의미를 한 눈에 파악할 수 있도록 도움을 주었고, 해석기하적 접근 방식을 사용한 풀이를 전개한 후 문제해결의 반성 단계에서 그 결과의 의미를 시각화하여 전체적으로 이해할 수 있도록 도움을 줄 수 있음을 알 수 있었다.

초등학교 4학년 학생들의 대수적 사고 분석 (An analysis of algebraic thinking of fourth-grade elementary school students)

  • 최지영;방정숙
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제22권2호
    • /
    • pp.137-164
    • /
    • 2008
  • 대수 교육은 전통적으로 중등 교육과정 중심의 기호의 조작 및 방정식의 풀이에 초점이 맞추어져 왔다. 그러나 초등 교육과정 전반에 걸친 수에 관한 광범위한 경험은 대수에서 강조되는 기호 및 구조에 기초가 될 수 있다. 본 연구는 초등학교 4학년을 대상으로 실시한 수업 사례를 바탕으로 학생들이 실제로 대수적 사고를 어떻게 구성해나가는지를 면밀하게 탐색하였다. 분석 결과 학생들은 구체물의 조작이나 그림그리기 등의 활동을 통해 규칙성을 인식하기 시작했고, 주어진 문제 상황을 표현하기 위해 다양한 산술적이고 비형식적인 전략을 사용하였으며, 외형이 다른 두 식의 동치관계를 식의 변형과정이 아닌 주어진 문제 상황과의 관계를 이용하여 이해하는 특징을 보였다. 또한, 문제 상황을 대수식으로 표현하는 과정에서 몇 가지 오류를 범했다. 본 연구는 구체적인 수업 사례를 바탕으로 초등학생들의 대수적 사고를 산술적 사고 및 비형식적 사고와 의미 있게 연결하는 대수 지도 방안에 대한 시사점을 제공한다.

  • PDF