• Title/Summary/Keyword: scatter radiation

Search Result 125, Processing Time 0.019 seconds

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

Effect of Scatter ray in Outside Telecobalt-60 Field Size (코발트-60 조사야 밖의 장기에 미치는 2차선의 영향)

  • Kim, You-Hyun;Kim, Young-Whan
    • Journal of radiological science and technology
    • /
    • v.11 no.2
    • /
    • pp.65-71
    • /
    • 1988
  • Radiation dose outside the radiotherapy treatment field can be significant and therefore is of clinical interest estimating organ dose. We have made measurements of dose at distances up to 70 cm from the central axis of $5{\times}5$, $10{\times}10$, $15{\times}15$, and $25{\times}25$ cm radiation fields of Co-60 ${\gamma}-ray$, at 5 cm depth in water. Contributions to the total secondary radiation dose from water scatter, machine (collimator) scatter and leakage radiation have been seperated. We have found that the component of dose from water scatter can be described by simple exponential function of distance from the central axis of the radiation field for all field sizes. Machine scatter contributes 20 to 60% of the total secondary dose depending on field size and distance from the field. Leakage radiation contributes very little dose, but becomes the dominant componant at distance beyond 40 cm from the central axis. Then, wedges can cause a factor 2 to 3 increase in dose at any point outside the field compared with the dose when no wedge is used. Adding blocks to a treatment field can cause an increase in dose at points outside the field, but the effect is much smaller than the effect of a wedge. From the results of these measurements, doses to selected organs outside the field for specified treatment geometries were estimated, and the potential for reducing these organ doses by additional shielding was assessed.

  • PDF

An Experimental Method for the Scatter Correction of MV Images Using Scatter to Primary Ratios (SPRs) (산란선 대 일차선비(SPR)를 이용한 MV 영상의 산란 보정을 위한 실험적 방법)

  • Jeon, Hosang;Park, Dahl;Lee, Jayeong;Nam, Jiho;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Lee, Ju Hye;Kim, Dongwon
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.143-150
    • /
    • 2014
  • In general radiotherapy, mega-voltage (MV) x-ray images are widely used as the unique method to verify radio-therapeutic fields. But, the image quality of MV images is much lower than that of kilo-voltage x-ray images due to scatter interactions. Since 1990s, studies for the scatter correction have performed with digital-based MV imaging systems. In this study, a novel method for the scatter correction is suggested using scatter to primary ratio (SPR), instead of conventional methods such as digital image processing or scatter kernel calculations. We measured two MV images with and without a solid water phantom describing a patient body with given imaging conditions, and calculated un-attenuated ratios. Then, we obtained SPR distributions for the scatter correction. For experimental validation, a line-pair (LP) phantom using several Al bars and a clinical pelvis MV image was used. As the result, scatter signals of the LP phantom image were successfully reduced so that original density distribution of the phantom was restored. Moreover, image contrast values increased after SPR correction at all ROIs of the clinical image. The mean value of increases was 48%. The SPR correction method suggested in this study has high reliability because it is based on actually measured data. Also, this method can be easily adopted in clinics without additional cost. We expected that the SPR correction can be an effective method to improve the quality of MV image guided radiotherapy.

Determination of Phantom Scatter Factors for Small Photon Fields (소조사면 광자선의 팬톰산란인수 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Total scatter factor ($S_{cp}$), head scatter factor ($S_c$) and phantom scatter factor ($S_p$) are very important for accurate radiation therapy at stereotactic radiosurgery (SRS) with irregular field shape using micro-MLC and intensity modulated radiation therapy (IMRT) including many small field sizes. In this study we measured and compared $S_{cp}$ with reference ion chamber, pinpoint chamber and diode detector and adapted the resuls form diode detector. Head scatter factors for small field sizes were also measured with diode detector covered 1.5 cm-thick solid water build-up cap. Some errors like as electron contamination of 1~3% were included in the values of Sc but trend of total results of $S_c$ was coincided with basic theory. Phantom scatter factors for small field sizes were calculated form $S_{cp}$ and $S_c$. The results of $S_p$ were compared and were well-agreed with those of other authors.

  • PDF

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

A Study on Optimum kVp in Four Spot Films of Stomach Examinations (위(胃) 사등분할촬영시(四等分割撮影時) 적정(適正)한 관전압(管電壓)에 관(關)한 검토(檢討))

  • Kim, Wha-Gon;Kyong, Kwang-Hyon;Kim, Young-Hwan;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.37-41
    • /
    • 1980
  • In an attempt to provide optimum kVp for four spot films of stomach examinations, we measured experimentally film density and scatter radiation with field size. And to investigate the effect of concentrations in barium sulphite and kVp in spot films of stomach fluoroscopy were carried out and the following results were obained. 1. The entire density of film by field size has the sharpest increase from $10cm^2$ to $100cm^2$, and relatively flattened curve beyond $500cm^2$ in field size. 2. The quantity of scatter radiation reaching an X-ray film depends upon field size: the larger the fields, the more scatter radiation. 3. It is necessary for increasing 3 to 5kVp as for the absence of barium sulphite and 5 to 7 kVp in the case of 20 per cent and 25 per cent in barium sulphite concentrations to produce uniform density in the four spot films for stomach fluoroscopy.

  • PDF

Characteristics of Photon Beam through a Handmade Build-Up Modifier as a Substitute of a Bolus (Bolus를 대체하기 위해 자체 제작된 선량상승영역 변환기를 투과한 광자선의 특성)

  • Kim, Sung Joon;Lee, Seoung Jun;Moon, Su Ho;Seol, Ki Ho;Lee, Jeong Eun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.225-232
    • /
    • 2014
  • We evaluated the effect of scatter on a build-up region based on the measured percent depth dose (PDD) of high-energy photon beams that penetrated a handmade build-up modifier (BM) as a substitute of bolus. BM scatter factors ($S_{BM}$) were calculated based on the PDDs of photon beams that penetrated through the BM. The calculated $S_{BM}$ values were normalized to 1 at the square field side (SFS) of 30 mm without a BM. For the largest SFS (200 mm), the SBM values for a 6-MV beam were 1.331, 1.519, 1.598, 1.641, and 1.657 for the corresponding BM thickness values. For a 10-MV beam, the $S_{BM}$ values were 1.384, 1.662, 1.825, 1.913, and 2.001 for the corresponding BM thickness values. The BM yielded 76% of the bolus efficiency. We expect BM to become useful devices for deep-set patient body parts to which it is difficult to apply a bolus.

The Experiment of Grid Characteristics for High-voltage Radiography of Chest (흉부촬영시 관전압과 선질에 따른 적절한 격자의 선택을 위한 실험)

  • Kim, Jung-Min;Ahn, Bong-Seon
    • Journal of radiological science and technology
    • /
    • v.15 no.2
    • /
    • pp.31-36
    • /
    • 1992
  • Grids can improve the diagnostic quality of chest radiography by trapping the greater part of scattered radiation thus providing more detailed. chest radiographic images. It is most effective mathod of reduce the scatter ratio but must increase the expour factor. The benefit of use of grid is improve the contrast and the loss is increase of patient dose. In chest radiography especially hard quality high voltage radiography it will have to be considered to select the optimum grid with view point of benefit and loss. In this experiment, author got some result of characteristics about 4 different grids with film method. 1. There was no difference the scatter ratio in case of no grid and the scatter ratio was about 60%. 2. 16 : 1 grid was excellent of scatter reduction factor in high voltage chest radiography, next was 10 : 1, CROSS, MICRO FINE grid have low scatter reduction rate compare to 16:1, 10:1 grid. 3. The bucky factor of CROSS grid in accordance of kVp was find out the highest in 4 grids, on the contraly 10 : 1 grid was profitable to the exposure does. 4. With careful consideration in the point of scatter reducion rate and bucky factor, author suggest the 10 : 1 linear grid on the use of chest radiography in $80{\sim}120\;kVp$, 16 : 1 grid in $120{\sim}140\;kVp$.

  • PDF

An Optimal Structure of a Novel Flat Panel Detector to Reduce Scatter Radiation for Clinical Usage: Performance Evaluation with Various Angle of Incident X-ray (산란선 제거를 위한 신개념 간접 평판형 검출기의 임상적용을 위한 최적 구조 : 입사 X선 각도에 따른 성능평가)

  • Yoon, Yongsu
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.533-542
    • /
    • 2017
  • In diagnostic radiology, the imaging system has been changed from film/screen to digital system. However, the method for removing scatter radiation such as anti-scatter grid has not kept pace with this change. Therefore, authors have devised the indirect flat panel detector (FPD) system with net-like lead in substrate layer which can remove the scattered radiation. In clinical context, there are many radiographic examinations with angulated incident X-ray. However, our proposed FPD has net-like lead foil so the vertical lead foil to the angulate incident X-ray would have bad effect on its performance. In this study, we identified the effect of vertical/horizontal lead foil component on the novel system's performance and improved the structure of novel system for clinical usage with angulated incident X-ray. Grid exposure factor and image contrast were calculated to investigate various structure of novel system using Monte Carlo simulation software when the incident X-ray was tilted ($0^{\circ}$, $15^{\circ}$, and $30^{\circ}$ from the detector plane). More photons were needed to obtain same image quality in the novel system with vertical lead foil only then the system with horizontal lead foil only. An optimal structure of novel system having different heights of its vertical and horizontal lead foil component showed improved performance compared with the novel system in a previous study. Therefore, the novel system will be useful in a clinical context with the angulated incident X-ray if the height and direction of lead foil in the substrate layer are optimized as the condition of conventional radiography.