DOI QR코드

DOI QR Code

Characteristics of Photon Beam through a Handmade Build-Up Modifier as a Substitute of a Bolus

Bolus를 대체하기 위해 자체 제작된 선량상승영역 변환기를 투과한 광자선의 특성

  • Kim, Sung Joon (Department of Radiation Oncology, Kyungpook National University Hospital) ;
  • Lee, Seoung Jun (Department of Radiation Oncology, Kyungpook National University Hospital) ;
  • Moon, Su Ho (Department of Radiation Oncology, Kyungpook National University Hospital) ;
  • Seol, Ki Ho (Department of Radiation Oncology, Kyungpook National University School of Medicine) ;
  • Lee, Jeong Eun (Department of Radiation Oncology, Kyungpook National University School of Medicine)
  • 김성준 (경북대학교병원 방사선종양학과) ;
  • 이승준 (경북대학교병원 방사선종양학과) ;
  • 문수호 (경북대학교병원 방사선종양학과) ;
  • 설기호 (경북대학교 의학전문대학원 방사선종양학교실) ;
  • 이정은 (경북대학교 의학전문대학원 방사선종양학교실)
  • Received : 2014.11.28
  • Accepted : 2014.12.20
  • Published : 2014.12.30

Abstract

We evaluated the effect of scatter on a build-up region based on the measured percent depth dose (PDD) of high-energy photon beams that penetrated a handmade build-up modifier (BM) as a substitute of bolus. BM scatter factors ($S_{BM}$) were calculated based on the PDDs of photon beams that penetrated through the BM. The calculated $S_{BM}$ values were normalized to 1 at the square field side (SFS) of 30 mm without a BM. For the largest SFS (200 mm), the SBM values for a 6-MV beam were 1.331, 1.519, 1.598, 1.641, and 1.657 for the corresponding BM thickness values. For a 10-MV beam, the $S_{BM}$ values were 1.384, 1.662, 1.825, 1.913, and 2.001 for the corresponding BM thickness values. The BM yielded 76% of the bolus efficiency. We expect BM to become useful devices for deep-set patient body parts to which it is difficult to apply a bolus.

본 논문에서는 자체 제작된 선량상승영역 변환기(build-up modifier, BM)을 투과하는 high energy photon beam의 심부선량백분율(PDD)을 특성을 측정하고 이 결과를 토대로 BM 산란인자(BM scatter factor, $S_{BM}$)를 계산하였다. 다양한 조건에서 BM scatter가 PDD의 Build-up region에 미치는 영향을 평가하고 BM의 유용성을 알아보는 것이 본 연구의 목적이다. $S_{BM}$는 BM을 사용하지 않은 SFS 30 mm에서 측정된 산란인자의 값을 1로서 정규화 하였다. 가장 큰 SFS 200 mm의 경우, 6 MV 광자선을 사용할 때 $S_{BM}$는 두께에 따라 각각 1.331, 1.519, 1.598, 1.641, 그리고 1.657이었다. 10 MV 광자선에는 각각 1.384, 1.662, 1.825, 1.913, 그리고 2.001이었다. BM의 효과는 bolus의 최대 76% 효율을 가지는 것으로 나타났다. Bolus를 밀착시키기 어려운 특정적 부위에 대해 BM은 그 대안으로써 효과적인 장치가 될 수 있을 것으로 기대된다.

Keywords

References

  1. Khan FM: The Physics of Radiation Therapy. 5th ed, Williams & Wilkins, Baltimore, MD (2013), pp. 61-70, pp. 133-141, pp. 241-244
  2. Chu JCH, Coia LR, Aziz D, et al: Dose to superficial node for patients with head and neck cancer treated with 6 MV and 60 Co photons. Radiother Oncol 21(4):257-260 (1991) https://doi.org/10.1016/0167-8140(91)90050-Q
  3. Niroomand-Rad A, Javedan K, Rodgers JE, Harter KW, et al: Effects of beam spoiler on radiation dose for head and neck irradiation with 10 MV photon beam. Int J Radiat Oncol Biol Phys 37(4):935-940 (1997) https://doi.org/10.1016/S0360-3016(96)00538-X
  4. Klein EE, Michalet-Lorenz M, Taylor M.E, et al: Use of a Lucite beam spoiler for high-energy breast irradiation. Med Dosim 20(Summer (2)):89-94 (1995) https://doi.org/10.1016/0958-3947(95)00006-I
  5. Lief EP, Hunt MA, Hong LX, Amols HI, et al: Radiation therapy of large intact breasts using a beam spoiler or photons with mixed energies. Med Dosim 32(Winter (4)):246-253 (2007). https://doi.org/10.1016/j.meddos.2007.02.002
  6. Hatice B, Aydin C, Murat O, Hilal A, et al: Surface dose measurements with GafChromic film for 6 and 18 MV photon beams. Phys Med 25:101-104 (2009) https://doi.org/10.1016/j.ejmp.2008.05.001
  7. Khan Y, Eduardo J, Udowicz, et al: Clinical and Dosimetric Implications of Air Gaps between Bolus and Skin Surface during Radiation Therapy. Journal of Cancer Therapy 4: 1251-1255 (2013) https://doi.org/10.4236/jct.2013.47147
  8. Butson J, Cheung T, Yu P, et al: Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiation Measurements 32: 201-204 (1999)
  9. Sroka M, Regula J, Lobodziec W, et al: The influence of the bolus-surface distance on the dose distribution in the build-up region. Repo Practi Oncol And Radiother 15: 161-164 (2010) https://doi.org/10.1016/j.rpor.2010.09.003
  10. Holt JG, Laughlin JS, Moroney JP, et al: The extension of the concept of tissue-air-ratios (TAR) to high-energy X-ray beams. Radiology 96:437-446 (1970) https://doi.org/10.1148/96.2.437
  11. Johns HE, Cunningham JR: The Physics of Radiology. 4rd ed. Springfield, IL (1983)
  12. McKerracher C, Thwaites DI, et al: Phantom scatter factors for small MV photon fields. Radiotherapy and Oncology 86: 272-275 (2008) https://doi.org/10.1016/j.radonc.2007.10.040