DOI QR코드

DOI QR Code

An Optimal Structure of a Novel Flat Panel Detector to Reduce Scatter Radiation for Clinical Usage: Performance Evaluation with Various Angle of Incident X-ray

산란선 제거를 위한 신개념 간접 평판형 검출기의 임상적용을 위한 최적 구조 : 입사 X선 각도에 따른 성능평가

  • Yoon, Yongsu (Dept. of Health Sciences, Faculty of Medical Sciences, Kyushu University)
  • 윤용수 (규슈대학교 의학연구원 보건학부문)
  • Received : 2017.10.28
  • Accepted : 2017.11.06
  • Published : 2017.12.31

Abstract

In diagnostic radiology, the imaging system has been changed from film/screen to digital system. However, the method for removing scatter radiation such as anti-scatter grid has not kept pace with this change. Therefore, authors have devised the indirect flat panel detector (FPD) system with net-like lead in substrate layer which can remove the scattered radiation. In clinical context, there are many radiographic examinations with angulated incident X-ray. However, our proposed FPD has net-like lead foil so the vertical lead foil to the angulate incident X-ray would have bad effect on its performance. In this study, we identified the effect of vertical/horizontal lead foil component on the novel system's performance and improved the structure of novel system for clinical usage with angulated incident X-ray. Grid exposure factor and image contrast were calculated to investigate various structure of novel system using Monte Carlo simulation software when the incident X-ray was tilted ($0^{\circ}$, $15^{\circ}$, and $30^{\circ}$ from the detector plane). More photons were needed to obtain same image quality in the novel system with vertical lead foil only then the system with horizontal lead foil only. An optimal structure of novel system having different heights of its vertical and horizontal lead foil component showed improved performance compared with the novel system in a previous study. Therefore, the novel system will be useful in a clinical context with the angulated incident X-ray if the height and direction of lead foil in the substrate layer are optimized as the condition of conventional radiography.

진단용 X선 영상에서 산란선은 화질을 열화시키는 주요한 원인이다. X선 장치는 필름/스크린을 사용한 아날로그 시스템부터 Imaging plate (IP) 및 평판 검출기(Flat panel detector; FPD)를 사용한 디지털 시스템으로 바뀌어 가고 있다. 그러나 산란 X선 제거를 위한 Grid는 아날로그 시대에 사용됐던 구조부터 큰 변화가 없다. 본 논문에서는 선행연구에서 고안된 산란선 제거율을 향상시키기 위한 간접변환형 평판검출기의 새로운 구조를 다양한 입사 X선을 사용하는 임상현장에서의 활용 가능성을 검토했다. 일반적으로 FPD는 3개의 층으로 구성되어 있다. 신호를 검출하는 화소와 화소 사이에는 전압을 거는 voltage line이나 데이터를 전달하는 data line과 같은 X선 불감영역이 존재한다. 선행연구에서는 이 불감영역에 정확히 맞추어 방사선 불 투과성의 납을 그물 모양으로 substrate layer에 삽입함으로서 검출기 자체가 산란선 제거 효과가 있도록 설계하였다. 새로운 구조의 임상 유용성을 평가하기 위해, 삽입된 그물 모양의 납을 입사 X선에 대해 가로, 세로성분으로 나누어 각각의 성능을 확인하였으며, 동시에 납의 높이를 변화시켜 납 높이가 성능에 미치는 영향을 영상 대조도와 grid 노출 인자를 통해 검토했다. 검출기면에 대해 대각선으로 입사한 X선($0^{\circ}$, $15^{\circ}$, $30^{\circ}$)에 대해서, 입사 X선에 대해 평행한 가로성분이 세로 성분에 비해 높은 영상 대조도와 낮은 그리드 노출 인자를 나타냈으며, 세로성분의 납 높이가 높을수록 본 연구에서 고안한 검출기에 악영향을 미치는 것을 확인했다. 그러므로 본 연구에서 고안한 새로운 FPD 시스템은 FPD의 구조를 방사선검사 조건과 목적에 맞추어 최적화함으로써 임상 의료현장에서의 사용 가능성이 확인되었다.

Keywords

References

  1. Doi K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 2006;51(13):R5. https://doi.org/10.1088/0031-9155/51/13/R02
  2. Rehani MM. Protection of patients in general radiography. In: Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy, Proceedings of an International Conference; 2001.
  3. Baek Cheol-Ha. A Study of Scattered Radiation Effect on Digital Radiography Imaging System.. Journal of Radiological Science and Technology 2017;40(1):71-77. https://doi.org/10.17946/JRST.2017.40.1.11
  4. Chan HP, Doi K. Physical characteristics of scattered radiation and the performance of antiscatter grids in diagnostic radiology. Radiographics 1982;2(3):378-406. https://doi.org/10.1148/radiographics.2.3.378
  5. Chan HP, Higashida Y. Performance of antiscatter grids in diagnostic radiology: experimental measurements and Monte Carlo simulation studies. Med Phys 1985;12(4):449-454. https://doi.org/10.1118/1.595670
  6. Riebel FA. The moirm effect in radiography. Am J Roentgenol 1972;115(3):641-643. https://doi.org/10.2214/ajr.115.3.641
  7. Cesar LJ, Schueler BA, Zink FE, Daly TR, Taubel JP, Jorgenson LL. Artifacts found in computed radiography. Br J Radiol 2001;74(878):195-202. https://doi.org/10.1259/bjr.74.878.740195
  8. Yoon Y, Morishita J, Park M, Kim H, Kim K, Kim J. Monte Carlo simulation-based feasibility study of novel indirect flat panel detector system for removing scatter radiation. Phys Med 2016;32(1):182-187. https://doi.org/10.1016/j.ejmp.2015.11.008
  9. Roh YH, Yoon Y, Kim K, Kim J, Morishita J. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation. J Instrum 2016;11(10):T10008. https://doi.org/10.1088/1748-0221/11/10/T10008
  10. Samuel E, Theron C. The radiology of the auditory ossicles. Br J Radiol 1952;25(293):245-252. https://doi.org/10.1259/0007-1285-25-293-245
  11. Young-Eun Yu1, Cheong-Hwan Lim, Joo-Young Ko. An Analysis of Factors That Affect Image Quality Deterioration in The Potable X-ray Examination on using Digital Wireless Detector. Journal of Radiological Science and Technology 2014;37(2):93-100.
  12. In-Ja Lee, Young- Bok Yeo, Tae-Sung Lee. Entrance Skin Dose and Image Quality Evaluation According to Use Grid Radiography for the Extremity in FPD System. Journal of Radiological Science and Technology 2010;33(4):341-348.
  13. Beutel J Kundel HL, Van Metter RL. Handbook of medical imaging. Volume 1: physics and psychophysics. Bellingham, WA: SPIE Press; 2000.
  14. Rowlands JA, Zhao W, Blevis IM, Waechter DF, Huang Z. Flat-panel digital radiology with amorphous selenium and active-matrix readout. Radiographics 1997;17(3):753-760. https://doi.org/10.1148/radiographics.17.3.9153709
  15. Chotas HG, Dobbins III JT, Ravin CE. Principles of digital radiography with large-area, electronically readable detectors: a review of the basics. Radiol 1999;210(3):595-599. https://doi.org/10.1148/radiology.210.3.r99mr15595
  16. Bontrager KL, Lampignano J. Textbook of radiographic positioning and related anatomy. Elsevier Health Sciences; 2013.
  17. Pelowitz DB. MCNPX user's manual, version 2.6.0. Los Alamos, NM: Los Alamos National Laboratory;2008.
  18. The Institute of Physics and Engineering in Medicine report 78. York, UK: IPEM; 1997.
  19. Japan Network for Research and Information on Medical Exposures: J-RIME. Establishment of diagnostic reference level based on domestic factual survey: 16-19; 2015.
  20. Bonenkamp JG, Boldingh WH. Quality and choice of Potter Bucky grids: I. A new method for the unambiguous determination of the quality of a grid. Acta Radiol 1959;(6):479-489.
  21. Busch HP, Lehmann KJ, Drescher P, Georgi M. New chest imaging techniques: a comparison of five analogue and digital methods. Eur Radiol 1992;2(4):335-341. https://doi.org/10.1007/BF00175438
  22. International Electrotechnical Commission, IEC 61267: medical diagnostic X-ray equipment-radiation conditions for use in the determination of characteristics; 2005.
  23. Dobbins JT, Samei E, Chotas HG, Warp RJ, Baydush AH, Floyd Jr CE, Ravin CE. Chest radiography: optimization of x-ray spectrum for cesium iodide-amorphous silicon flat-panel detector 1. Radiol 2003;226(1):221-230. https://doi.org/10.1148/radiol.2261012023
  24. Bonenkamp J, Boldigh W. Quality and choice of potter Bucky grids. III. The choice of Bucky grid. Acta Radiol 1959;52(1959):241. https://doi.org/10.3109/00016925909171643
  25. Carlin MD, Nishikawa RM, MacMahon H. The effect of x-ray beam alignment on the performance of antiscatter grids. Med Phys 1996;23(8):1347-1350. https://doi.org/10.1118/1.597767
  26. Tanaka N, Naka K, Saito A, Morishita J, Toyofuku F, Ohki M, Higashida Y. Investigation of optimum anti-scatter grid selection for digital radiography: physical imaging properties and detectability of low-contrast signals. Radiol Phys Technol 2013;6(1):54-60. https://doi.org/10.1007/s12194-012-0169-y