• 제목/요약/키워드: sc-Si

검색결과 179건 처리시간 0.027초

The Effects of Sc on the Microstructures of Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 미세조직에 미치는 Sc의 영향)

  • Jeong Y. S.;Kim M. H.;Choi S. H.
    • Korean Journal of Materials Research
    • /
    • 제15권7호
    • /
    • pp.480-485
    • /
    • 2005
  • Sc has been known to be an very effective ppt-hardening element in Al and Al alloys and also to be effective in modification of eutectic Si in hypoeutectic Al-Si alloys. The modification mechanism of Sc is different from that of the traditional modifier Sr in Al-Si alloys. In the present study the effects of Sc on the primary and eutectic Si in hypereutectic Al-Si alloys were investigated with evaluating the microstructures with OM, EPMA and EBSD methods. The results represent that Sc has only a small effect on primary Si when added less than $0.8wt\%$. However, when Sc addition leading to the precipitation of metallic Sc within primary Si reaches $1.6wt\%$, very coarse primary Si occurs.

The Effects of Sc on the Microstructure of Hypoeutectic Al-Si Alloys (아공정 Al-Si합금 조직에 미치는 Sc의 효과)

  • Kim, Myung-Han;Lee, Jong-Tae
    • Journal of Korea Foundry Society
    • /
    • 제24권3호
    • /
    • pp.145-152
    • /
    • 2004
  • The eutectic Si in Al-8.5wt.%Si alloy was changed from large flake to fine lemellar(or fibrous) shape when the Sc amount in the Al-Si alloy reaches 0.2wt.%. The optimum amount of Sc for the best modification effect was 0.8wt.% and slight decrease of modification effect occurred over this value. The study on the distribution of the modifiers(Sr, Na, and Sc) and the measurement of the surface tension of the Al-8.5wt.%Si alloy melt added with Sr, Na, and Sc modifier, respectively, reveals that Sc modifies the eutectic Si by the decrease of surface tension, while Sr and Na modify the eutectic Si mainly by impurity induced twinning mechanism.

Effect of Sc Addition on the Microstructure Modification of Al-6Si-2Cu Alloy (Sc 첨가에 따른 Al-6Si-2Cu 합금의 미세조직 개량화)

  • An, Seongbin;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제35권3호
    • /
    • pp.150-158
    • /
    • 2022
  • The effects of scandium addition on the Al-6Si-2Cu Alloy were investigated. The Al-6Si-2Cu-Sc alloy was prepared by gravity die casting process. In this study, scandium was added at 0.2 wt%, 0.4 wt%, 0.8 wt%, and 1.0 wt%. The microstructure of Al-6Si-2Cu-Sc alloy was investigated using Optical Microscope, Field Emission Scanning Electron Microscope, Electron Back Scatter Diffraction, and Transmission Electron microscope. The microstructure of Al-6Si-2Cu alloy with scandium added changed from dendrite structure to equiaxed crystal structure in specimens of 0.4 wt% Sc or more, and coarse needle-shape eutectic Si and β-Al5FeSi phases were segmented and refined. The nanosized Al3Sc intermetallic compound was observed to be uniformly distributed in the modified Al matrix.

Study on the characteristics of transition metals for TSSG process of SiC single crystal (SiC 단결정의 TSSG 공정을 위한 전이금속 특성 연구)

  • Lee, Seung-June;Yoo, Yong-Jae;Jeong, Seong-Min;Bae, Si-Young;Lee, Won-Jae;Shin, Yun-Ji
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제32권2호
    • /
    • pp.55-60
    • /
    • 2022
  • In this study, a heat treatment experiment was conducted to select a new melt composition that can easily control the unintentionally doped nitrogen (N-UID) without degrading the SiC single crystal quality during TSSG process. The experiment was carried out for about 2 hours at a temperature of 1900℃ under Ar atmosphere. The used melt composition is based on either Si-Ti 10 at% or Si-Cr 30 at%, and also Co or Sc transition metals, which are effective for carbon solubility, were added at 3 at%, respectively. After the experiment, the crucible was cross-sectionally cut, and evaluated the Si-C reaction layer on the crucible-melt interface. As a result, with Sc addition, Si-C reaction layers uniformly occurred with a Si-infiltrated layer (~550 ㎛) and a SiC interlayer (~23 ㎛). This result represented that the addition of Sc is an effective transition metal with high carbon solubility and can feed carbon sources into the melt homogeneously. In addition, Sc is well known to have low reactivity energy with nitrogen compared to other transition metals. Therefore, we expect that both growth rate and Nitrogen UID can be controlled by Si-Sc based melt in the TSSG process.

Low Resistance SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 저저항 SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET)

  • Kim, Jung-hun;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • 제23권3호
    • /
    • pp.756-761
    • /
    • 2019
  • In this paper, we propose SC-SJ(Shielding Connected-Super Junction) UMOSFET structure in which p-pillars of conventional 4H-SiC Super Junction UMOSFET structures are placed under the shielding region of UMOSFET. In the case of the proposed SC-SJ UMOSFET, the p-pillar and the shielding region are coexisted so that no breakdown by the electric field occurs in the oxide film, which enables the doping concentration of the pillar to be increased. As a result, the on-resistance is lowered to improve the static characteristics of the device. Through the Sentaurus TCAD simulation, the static characteristics of proposed structure and conventional structure were compared and analyzed. The SC-SJ UMOSFET achieves a 50% reduction in on-resistance compared to the conventional structure without any change in the breakdown voltage.

Effect of SC-1 Cleaning to Prevent Al Diffusion for Ti Schottky Barrier Diode (Ti 쇼트키 배리어 다이오드의 Al 확산 방지를 위한 SC-1 세정 효과)

  • Choi, Jinseok;Choi, Yeo Jin;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • 제31권2호
    • /
    • pp.97-100
    • /
    • 2021
  • We report the effect of Standard Clean-1 (SC-1) cleaning to remove residual Ti layers after silicidation to prevent Al diffusion into Si wafer for Ti Schottky barrier diodes (Ti-SBD). Regardless of SC-1 cleaning, the presence of oxygen atoms is confirmed by Auger electron spectroscopy (AES) depth profile analysis between Al and Ti-silicide layers. Al atoms at the interface of Ti-silicide and Si wafer are detected, when the SC-1 cleaning is not conducted after rapid thermal annealing. On the other hand, Al atoms are not found at the interface of Ti-SBD after executing SC-1 cleaning. Al diffusion into the interface between Ti-silicide and Si wafer may be caused by thermal stress at the Ti-silicide layer. The difference of the thermal expansion coefficients of Ti and Ti-silicide gives rise to thermal stress at the interface during the Al layer deposition and sintering processes. Although a longer sintering time is conducted for Ti-SBD, the Al atoms do not diffuse into the surface of the Si wafer. Therefore, the removal of the Ti layer by the SC-1 cleaning can prevent Al diffusion for Ti-SBD.

The effect of Sc on the properties of Al-Si alloy Powders fabricated by Gas Atomization and Their extruded bars (Sc첨가가 가스분무법 으로 제조된 Al-Si합금 분말 및 압출재의 특성에 미치는 효과)

  • Lee, Woo-Ram;Kim, Ji-Hoon;Goo, Ja-Myoung;Kim, Jun-Ro;Lee, Tae-Haeng;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2009
  • In this research, the effect of Sc on the micro structure and mechanical properties of Al-20Si alloy powders and their extruded bar was investigated. The Al-20wt%Si and Al-20wt%Si-0.6wr%Sc powders were produced by gas atomization. The micro structures of the alloy powders and extrude was examined by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The alloy powders were subsequently canned, degassed and extruded in order to produce the alloy bulk. It was found that the micro structure of the Al-20Si alloy powder was refined and the mechanical properties was significantly improved by the addition of 0.6Sc.

  • PDF

Effect of Sc, Sr Elements on Eutectic Mg2Si Modification and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 공정 Mg2Si 개량과 주조특성에 미치는 Sc, Sr 첨가원소의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • 제35권6호
    • /
    • pp.147-154
    • /
    • 2015
  • The effects of Sc and Sr elements on the modification of the eutectic $Mg_2Si$ phase and the castability were investigated in the Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurements of the cooling curve and microstructure observations were performed to analyze the additional effects of Sc and Sr minor elements during the solidification process. A prominent effect found on the modification of the eutectic $Mg_2Si$ phase with additions of the Sr and Sc elements. Here, a fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident with an addition of Sc element up to 0.2 wt%. The growth temperature of the eutectic $Mg_2Si$ phase decreased and the effect on the modification of the eutectic $Mg_2Si$ phase increased with the addition of Sr element up to 0.02 wt%. The addition of 0.02wt%Sr had the strongest effect on the modification of the eutectic $Mg_2Si$ phase, and the resulting microstructure of the eutectic $Mg_2Si$ phase was found to have a fibrous morphology with a decreased aspect ratio and an increased modification ratio. Fluidity and shrinkage tests were conducted to evaluate the castability of the alloy. The addition of 0.02wt%Sr effectively increased the fluidity of the alloy, while an addition of Sc did not show any effect compared to when nothing was added. The maximum filling length was recorded for 0.01wt%TiB-0.02wt%Sr owing to the effect of the fine ${\alpha}$-Al grains. The macro-shrinkage ratio decreased, while the micro-shrinkage ratio increased with the addition of various eutectic modifiers. The highest ratio of micro-shrinkage was recorded for the 0.02wt%Sr condition. However, the total shrinkage ratio was nearly identical regardless of the amounts added in this study.

Characteristics of CMOS Transistor using Dual Poly-metal(W/WNx/Poly-Si) Gate Electrode (쌍극 폴리-금속 게이트를 적용한 CMOS 트랜지스터의 특성)

  • 장성근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제15권3호
    • /
    • pp.233-237
    • /
    • 2002
  • A giga-bit DRAM(dynamic random access memory) technology with W/WNx/poly-Si dual gate electrode is presented in 7his papers. We fabricated $0.16\mu\textrm{m}$ CMOS using this technology and succeeded in suppressing short-channel effects. The saturation current of nMOS and surface-channel pMOS(SC-pMOS) with a $0.16\mu\textrm{m}$ gate was observed 330 $\mu\A/\mu\textrm{m}$ and 100 $\mu\A/\mu\textrm{m}$ respectively. The lower salutation current of SC-pMOS is due to the p-doped poly gate depletion. SC-pMOS shows good DIBL(dram-induced harrier lowering) and sub-threshold characteristics, and there was no boron penetration.