• Title/Summary/Keyword: sampling interpolation

Search Result 179, Processing Time 0.028 seconds

Selective Volume Rendering Using Global Shape Information (전역적 형태정보를 이용한 선택적 볼륨렌더링)

  • Hong, Helen;Kim, Myoung-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3280-3289
    • /
    • 2000
  • In this paper,we propose a novel technoque of improving volume rendering quality and speed by integrating volume data and global shape information together. The selective volume rendering method is to generate distance transformed volume using a distance transform to determine the minimum distance to the neaest intercsting part and then render it. The shape information prevents from object occlusions come from similar intensity of each object. Thus it provides effective visual results that enable to get a clear understanding of complex structures. We show the results of selective volume rendering method for left ventricle and right ventricle ans well as the results of selective sampling methods depending on the interpolation from EBCT cardiac images. Our method offers an accelerated technique to accurately visuahze the surfaces of devined objects segmented from the volume.

  • PDF

An Evaluation of a Dasymetric Surface Model for Spatial Disaggregation of Zonal Population data (구역단위 인구자료의 공간적 세분화를 위한 밀도 구분적 표면모델에 대한 평가)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.5
    • /
    • pp.614-630
    • /
    • 2006
  • Improved estimates of populations at risk for quick and effective response to natural and man-made disasters require spatial disaggregation of zonal population data because of the spatial mismatch problem in areal units between census and impact zones. This paper implements a dasymetric surface model to facilitate spatial disaggregation of the population of a census block group into populations associated with each constituent pixel and evaluates the performance of the surface-based spatial disaggregation model visually and statistically. The surface-based spatial disaggregation model employed geographic information systems (GIS) to enable dasymetric interpolation to be guided by satellite-derived land use and land cover data as additional information about the geographic distributor of population. In the spatial disaggregation, percent cover based empirical sampling and areal weighting techniques were used to objectively determine dasymetric weights for each grid cell. The dasymetric population surface for the Atlanta metropolitan area was generated by the surface-based spatial disaggregation model. The accuracy of the dasymetric population surface was tested on census counts using the root mean square error (RMSE) and an adjusted RMSE. The errors related to each census track and block group were also visualized by percent error maps. Results indicate that the dasymetric population surface provides high-precision estimates of populations as well as the detailed spatial distribution of population within census block groups. The results also demonstrate that the population surface largely tends to overestimate or underestimate population for both the rural and forested and the urban core areas.

  • PDF

Modeling Methodology for Cold Tolerance Assessment of Pittosporum tobira (돈나무의 내한성 평가 모델링)

  • Kim, Inhea;Huh, Keun Young;Jung, Hyun Jong;Choi, Su Min;Park, Jae Hyoen
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.241-251
    • /
    • 2014
  • This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was $-10^{\circ}C$ and the lethal was $-10^{\circ}C{\sim}-5^{\circ}C$. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.

An 1.2V 8-bit 800MSPS CMOS A/D Converter with an Odd Number of Folding Block (홀수개의 폴딩 블록으로 구현된 1.2V 8-bit 800MSPS CMOS A/D 변환기)

  • Lee, Dong-Heon;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.61-69
    • /
    • 2010
  • In this paper, an 1.2V 8b 800MSPS A/D Converter(ADC) with an odd number of folding block to overcome the asymmetrical boundary-condition error is described. The architecture of the proposed ADC is based on a cascaded folding architecture using resistive interpolation technique for low power consumption and high input frequency. The ADC employs a novel odd folding block to improve the distortion of signal linearity and to reduce the offset errors. In the digital block, furthermore, we use a ROM encoder to convert a none-$2^n$-period code into the binary code. The chip has been fabricated with an $0.13{\mu}m$ 1P6M CMOS technology. The effective chip area is $870{\mu}m\times980{\mu}m$. SNDR is 44.84dB (ENOB 7.15bit) and SFDR is 52.17dBc, when the input frequency is 10MHz at sampling frequency of 800MHz.

A Semantic Annotation Method for Efficient Representation of Moving Objects (이동 객체의 효과적 표현을 위한 시맨틱 어노테이션 방법)

  • Lee, Jin-Hwal;Hong, Myung-Duk;Lee, Kee-Sung;Jung, Jin-Guk;Jo, Geun-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.67-76
    • /
    • 2011
  • Recently, researches for semantic annotation methods which represent and search objects included in video data, have been briskly activated since video starts to be popularized as types for interactive contents. Different location data occurs at each frame because coordinates of moving objects are changed with the course of time. Saving the location data for objects of every frame is too ineffective. Thus, it is needed to compress and represent effectively. This paper suggests two methods; the first, ontology modeling for moving objects to make users intuitively understandable for the information, the second, to reduce the amount of data for annotating moving objects by using cubic spline interpolation. To verify efficiency of the suggested method, we implemented the interactive video system and then compared with each video dataset based on sampling intervals. The result follows : when we got samples of coordinate less than every 15 frame, it showed that could save up to 80% amount of data storage; moreover, maximum of error deviation was under 31 pixels and the average was less than 4 pixels.

Optimization of Soil Contamination Distribution Prediction Error using Geostatistical Technique and Interpretation of Contributory Factor Based on Machine Learning Algorithm (지구통계 기법을 이용한 토양오염 분포 예측 오차 최적화 및 머신러닝 알고리즘 기반의 영향인자 해석)

  • Hosang Han;Jangwon Suh;Yosoon Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.331-341
    • /
    • 2023
  • When creating a soil contamination map using geostatistical techniques, there are various sources that can affect prediction errors. In this study, a grid-based soil contamination map was created from the sampling data of heavy metal concentrations in soil in abandoned mine areas using Ordinary Kriging. Five factors that were judged to affect the prediction error of the soil contamination map were selected, and the variation of the root mean squared error (RMSE) between the predicted value and the actual value was analyzed based on the Leave-one-out technique. Then, using a machine learning algorithm, derived the top three factors affecting the RMSE. As a result, it was analyzed that Variogram Model, Minimum Neighbors, and Anisotropy factors have the largest impact on RMSE in the Standard interpolation. For the variogram models, the Spherical model showed the lowest RMSE, while the Minimum Neighbors had the lowest value at 3 and then increased as the value increased. In the case of Anisotropy, it was found to be more appropriate not to consider anisotropy. In this study, through the combined use of geostatistics and machine learning, it was possible to create a highly reliable soil contamination map at the local scale, and to identify which factors have a significant impact when interpolating a small amount of soil heavy metal data.

GPU-based dynamic point light particles rendering using 3D textures for real-time rendering (실시간 렌더링 환경에서의 3D 텍스처를 활용한 GPU 기반 동적 포인트 라이트 파티클 구현)

  • Kim, Byeong Jin;Lee, Taek Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • This study proposes a real-time rendering algorithm for lighting when each of more than 100,000 moving particles exists as a light source. Two 3D textures are used to dynamically determine the range of influence of each light, and the first 3D texture has light color and the second 3D texture has light direction information. Each frame goes through two steps. The first step is to update the particle information required for 3D texture initialization and rendering based on the Compute shader. Convert the particle position to the sampling coordinates of the 3D texture, and based on this coordinate, update the colour sum of the particle lights affecting the corresponding voxels for the first 3D texture and the sum of the directional vectors from the corresponding voxels to the particle lights for the second 3D texture. The second stage operates on a general rendering pipeline. Based on the polygon world position to be rendered first, the exact sampling coordinates of the 3D texture updated in the first step are calculated. Since the sample coordinates correspond 1:1 to the size of the 3D texture and the size of the game world, use the world coordinates of the pixel as the sampling coordinates. Lighting process is carried out based on the color of the sampled pixel and the direction vector of the light. The 3D texture corresponds 1:1 to the actual game world and assumes a minimum unit of 1m, but in areas smaller than 1m, problems such as stairs caused by resolution restrictions occur. Interpolation and super sampling are performed during texture sampling to improve these problems. Measurements of the time taken to render a frame showed that 146 ms was spent on the forward lighting pipeline, 46 ms on the defered lighting pipeline when the number of particles was 262144, and 214 ms on the forward lighting pipeline and 104 ms on the deferred lighting pipeline when the number of particle lights was 1,024766.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

A Mismatch-Insensitive 12b 60MS/s 0.18um CMOS Flash-SAR ADC (소자 부정합에 덜 민감한 12비트 60MS/s 0.18um CMOS Flash-SAR ADC)

  • Byun, Jae-Hyeok;Kim, Won-Kang;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.17-26
    • /
    • 2016
  • This work proposes a 12b 60MS/s 0.18um CMOS Flash-SAR ADC for various systems such as wireless communications and portable video processing systems. The proposed Flash-SAR ADC alleviates the weakness of a conventional SAR ADC that the operation speed proportionally increases with a resolution by deciding upper 4bits first with a high-speed flash ADC before deciding lower 9bits with a low-power SAR ADC. The proposed ADC removes a sampling-time mismatch by using the C-R DAC in the SAR ADC as the combined sampling network instead of a T/H circuit which restricts a high speed operation. An interpolation technique implemented in the flash ADC halves the required number of pre-amplifiers, while a switched-bias power reduction scheme minimizes the power consumption of the flash ADC during the SAR operation. The TSPC based D-flip flop in the SAR logic for high-speed operation reduces the propagation delay by 55% and the required number of transistors by half compared to the conventional static D-flip flop. The prototype ADC in a 0.18um CMOS demonstrates a measured DNL and INL within 1.33LSB and 1.90LSB, with a maximum SNDR and SFDR of 58.27dB and 69.29dB at 60MS/s, respectively. The ADC occupies an active die area of $0.54mm^2$ and consumes 5.4mW at a 1.8V supply.

Design and Implementation of AR Model based Automatic Identification and Restoration Scheme for Line Scratches in Old Films (AR 모델 기반의 고전영화의 긁힘 손상의 자동 탐지 및 복원 시스템 설계와 구현)

  • Han, Ngoc-Soc;Kim, Seong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.47-54
    • /
    • 2010
  • Old archived film shows two major defects: line scratch and blobs. In this paper, we present a design and implementation of an automatic video restoration system for line scratches observed in archived film. We use autoregressive (AR) image model because we can make stochastic and specifically autoregressive image generation process with our PAST-PRESENT model and Sampling Pattern. We designed locality maximizing scanning pattern, which can generate nearly stationary time-like series of pixels, which is a strong requirement for a stochastic series to be autoregressive. The sampled pixel series undergoes filtering and model fitting using Durbin-Levinson algorithm before interpolation process. We designed three-stage film restoration system, which includes (1) film acquisition from VHS tapes, (2) simple line scratch detection and restoration, and (3) manual blob identification and sophisticated inpainting scheme. We implemented film acquisition and simple inpainting scheme on Texas Instruments DSP board TMS320DM642 EVM, and implemented our AR inpainting scheme on PC for sophisticated restoration. We experimented our scheme with two old Korean films: "Viva Freedom" and "Robot Tae-Kwon-V", and the experimental results show that our scheme improves Bertalmio's scheme for subjective quality (MOS), objective quality (PSNR), and especially restoration ratio (RR), which reflects how much similar to the manual inpainting results.