• Title/Summary/Keyword: s-convex functions

Search Result 103, Processing Time 0.023 seconds

FIXED POINT THEOREMS FOR INFINITE DIMENSIONAL HOLOMORPHIC FUNCTIONS

  • Harris, Lwarence-A.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.175-192
    • /
    • 2004
  • This talk discusses conditions on the numerical range of a holomorphic function defined on a bounded convex domain in a complex Banach space that imply that the function has a unique fixed point. In particular, extensions of the Earle-Hamilton Theorem are given for such domains. The theorems are applied to obtain a quantitative version of the inverse function theorem for holomorphic functions and a distortion form of Cartan's unique-ness theorem.

RADII PROBLEMS OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH FIXED SECOND COEFFICIENTS

  • PORWAL, SAURABH;BULUT, SERAP
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.317-323
    • /
    • 2015
  • The purpose of the present paper is to study certain radii problems for the function $$f(z)=\[{\frac{z^{1-{\gamma}}}{{\gamma}+{\beta}}}\(z^{\gamma}[D^nF(z)]^{\beta}\)^{\prime}\]^{1/{\beta}}$$, where ${\beta}$ is a positive real number, ${\gamma}$ is a complex number such that ${\gamma}+{\beta}{\neq}0$ and the function F(z) varies various subclasses of analytic functions with fixed second coefficients. Relevant connections of the results presented herewith various well-known results are briefly indicated.

SOME EXTENSION RESULTS CONCERNING ANALYTIC AND MEROMORPHIC MULTIVALENT FUNCTIONS

  • Ebadian, Ali;Masih, Vali Soltani;Najafzadeh, Shahram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.911-927
    • /
    • 2019
  • Let $\mathscr{B}^{{\eta},{\mu}}_{p,n}\;({\alpha});\;({\eta},{\mu}{\in}{\mathbb{R}},\;n,\;p{\in}{\mathbb{N}})$ denote all functions f class in the unit disk ${\mathbb{U}}$ as $f(z)=z^p+\sum_{k=n+p}^{\infty}a_kz^k$ which satisfy: $$\|\[{\frac{f^{\prime}(z)}{pz^{p-1}}}\]^{\eta}\;\[\frac{z^p}{f(z)}\]^{\mu}-1\| <1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. And $\mathscr{M}^{{\eta},{\mu}}_{p,n}\;({\alpha})$ indicates all meromorphic functions h in the punctured unit disk $\mathbb{U}^*$ as $h(z)=z^{-p}+\sum_{k=n-p}^{\infty}b_kz^k$ which satisfy: $$\|\[{\frac{h^{\prime}(z)}{-pz^{-p-1}}}\]^{\eta}\;\[\frac{1}{z^ph(z)}\]^{\mu}-1\|<1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. In this paper several sufficient conditions for some classes of functions are investigated. The authors apply Jack's Lemma, to obtain this conditions. Furthermore, sufficient conditions for strongly starlike and convex p-valent functions of order ${\gamma}$ and type ${\beta}$, are also considered.

A FEW RESULTS ON JANOWSKI FUNCTIONS ASSOCIATED WITH k-SYMMETRIC POINTS

  • Al Sarari, Fuad S;Latha, Sridhar;Darus, Maslina
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.389-403
    • /
    • 2017
  • The purpose of the present paper is to introduce and study new subclasses of analytic functions which generalize the classes of Janowski functions with respect to k-symmetric points. We also study certain interesting properties like covering theorem, convolution condition, neighborhood results and argument theorem.

Univalent Functions Associated with the Symmetric Points and Cardioid-shaped Domain Involving (p,q)-calculus

  • Ahuja, Om;Bohra, Nisha;Cetinkaya, Asena;Kumar, Sushil
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.75-98
    • /
    • 2021
  • In this paper, we introduce new classes of post-quantum or (p, q)-starlike and convex functions with respect to symmetric points associated with a cardiod-shaped domain. We obtain (p, q)-Fekete-Szegö inequalities for functions in these classes. We also obtain estimates of initial (p, q)-logarithmic coefficients. In addition, we get q-Bieberbachde-Branges type inequalities for the special case of our classes when p = 1. Moreover, we also discuss some special cases of the obtained results.

AN EXTENSION OF JENSEN-MERCER INEQUALITY WITH APPLICATIONS TO ENTROPY

  • Yamin, Sayyari
    • Honam Mathematical Journal
    • /
    • v.44 no.4
    • /
    • pp.513-520
    • /
    • 2022
  • The Jensen and Mercer inequalities are very important inequalities in information theory. The article provides the generalization of Mercer's inequality for convex functions on the line segments. This result contains Mercer's inequality as a particular case. Also, we investigate bounds for Shannon's entropy and give some new applications in zeta function and analysis.

On a Class of Univalent Functions Defined by Ruscheweyh Derivatives

  • SHAMS, S.;KULKARNI, S.R.;JAHANGIRI, JAY M.
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.579-585
    • /
    • 2003
  • A new class of univalent functions is defined by making use of the Ruscheweyh derivatives. We provide necessary and sufficient coefficient conditions, extreme points, integral representations, distortion bounds, and radius of starlikeness and convexity for this class.

  • PDF

SUBCLASSES OF k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR

  • Seker, Bilal;Acu, Mugur;Eker, Sevtap Sumer
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.169-182
    • /
    • 2011
  • The main object of this paper is to introduce and investigate new subclasses of normalized analytic functions in the open unit disc $\mathbb{U}$, which generalize the familiar class of k-starlike functions. The various properties and characteristics for functions belonging to these classes derived here include (for example) coefficient inequalities, distortion theorems involving fractional calculus, extreme points, integral operators and integral means inequalities.