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AN EXTENSION OF JENSEN-MERCER INEQUALITY WITH

APPLICATIONS TO ENTROPY

Yamin Sayyari

Abstract. The Jensen and Mercer inequalities are very important in-

equalities in information theory. The article provides the generalization
of Mercer’s inequality for convex functions on the line segments. This

result contains Mercer’s inequality as a particular case. Also, we inves-

tigate bounds for Shannon’s entropy and give some new applications in
zeta function and analysis.

1. Introduction

Let I := [a, b] be an interval, x := {xi}ni=1 ⊆ I and p := {pi}n1 ⊆ [0, 1]
with

∑n
i=1 pi = 1. The following inequality is well known in the literature as

Jensen’s inequality.

Theorem 1.1. [7] (Jensen’s inequality) If f is a convex function on an
interval I, x := {xi}ni=1 ⊆ I and

∑n
i=1 pi = 1, then

0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
:= Jf (p,x).

A variant of Jensen’s inequality is obtained by Mercer [5]. Mercer [5] proved
that if f is a convex function on [a, b], then

Theorem 1.2. [5] If f is a convex function on an interval I := [a, b], xi ∈ I,
1 ≤ i ≤ n and

∑n
i=1 pi = 1, then

If (p,x) := f

(
a+ b−

n∑
i=1

pixi

)
+

n∑
i=1

pif(xi) ≤ f(a) + f(b).(1.1)

Lemma 1.3. ([5], Lemma 1.3) Let 0 < a ≤ y ≤ b. For f convex we have:

f(a+ b− y) ≤ f(a) + f(b)− f(y).

The following lemma and Lemma 1.3 are equivalent.
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Lemma 1.4. Let f be a convex function on [a, b], x1, x2 ∈ [a, b] and x1 +
x2 = a+ b. Then

f(x1) + f(x2) ≤ f(a) + f(b).(1.2)

Proof. It follows from Lemma 1.3 with x1 = a+ b− y and x2 = y.

2. An extension of Mercer inequality

In this section, we extend the Mercer inequality (1.2) for convex functions.

Theorem 2.1. Let f be a convex function on [a, b], x1, . . . , xn ∈ [a, b] and
x1+...+xn

n = a+b
2 . Then

f

(
a+ b

2

)
≤ f(x1) + . . .+ f(xn)

n
≤ f(a) + f(b)

2
.

Proof. Let x1+...+xn

n = a+b
2 . The first inequality is a direct consequence of

Jensen’s inequality, i.e.,

f

(
a+ b

2

)
= f

(
x1 + . . .+ xn

n

)
≤
∑n

i=1 f(xi)

n
.

The second inequality is verified as follows. Since xi ∈ [a, b], there is a sequence
{λi}ni=1, λi ∈ [0, 1], such that xi = λia + (1 − λi)b. On the other hand, since
x1+...+xn

n = a+b
2 , we have∑n

i=1 λi

n
=

n∑
i=1

1− λi

n
=

1

2
.

Hence,

f(x1) + . . .+ f(xn)

n
=

∑n
i=1 f(λia+ (1− λi)b)

n

≤
∑n

i=1 λif(a) +
∑n

i=1(1− λi)f(b)

n

=
f(a) + f(b)

2
.

Corollary 2.2. With the notations in Theorem 2.1, if n = 2, then

f(x1) + f(x2) ≤ f(a) + f(b),

which is analogous to inequality (1.2).

Theorem 2.3. Let f : (0,∞) −→ R be a convex function. Then

f(
1 + n

2
) ≤ f(1) + f(2) + . . .+ f(n)

n
≤ f(1) + f(n)

2
.
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Proof. Since f is convex on (0,∞), f is convex on [1, n] for all natural
number n. Also, since 1+2+...+n

n = 1+n
2 , by the use of Theorem 2.1 we conclude

that

f

(
1 + n

2

)
≤ f(1) + f(2) + . . .+ f(n)

n
≤ f(1) + f(n)

2
.

Example 2.4. Let a < b, f be a convex function on [a, b] and let x ∈ [a, b],
x1 = a+x

2 , x2 = b+x
2 and x3 = a+ b− x. Then x1+x2+x3

3 = a+b
2 , hence by the

use of Theorem 2.1 we have

f

(
a+ b

2

)
≤

f
(
a+x
2

)
+ f

(
b+x
2

)
+ f(a+ b− x)

3
≤ f(a) + f(b)

2

for all x ∈ [a, b]. Integrating these inequalities over [a, b] with respect to x
yields

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(b) + f(a)

2

which is the well-known Hermite–Hadamard inequality.

Theorem 2.5. Let f be a convex function on [a, b],
∑n

k=1 pk = 1, [xij ]n×m

be a matrix with a ≤ xij ≤ b for all i(1 ≤ i ≤ n), j(1 ≤ j ≤ m) and

∑n
i=1 xij

n
=

a+ b

2

for all j(1 ≤ j ≤ m). Then

∑m
j=1

∑n−1
i=1 pjf(xij) + f

[
n
2 (a+ b)−

∑m
j=1

∑n−1
i=1 pjxij

]
n

≤ f(a) + f(b)

2
.
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Proof. By the use of Theorem 2.1 we have∑m
j=1

∑n−1
i=1 pjf(xij) + f

[
n
2 (a+ b)−

∑m
j=1

∑n−1
i=1 pjxij

]
n

=

∑m
j=1

∑n−1
i=1 pjf(xij) + f

[∑m
j=1 pj(

n
2 (a+ b)−

∑n−1
i=1 xij)

]
n

≤

∑m
j=1

∑n−1
i=1 pjf(xij) +

∑m
j=1 pjf

[
n
2 (a+ b)−

∑n−1
i=1 xij

]
n

=

m∑
j=1

pj


∑n−1

i=1 f(xij) + f
[
n
2 (a+ b)−

∑n−1
i=1 xij

]
n


≤

m∑
j=1

pj

{
f(a) + f(b)

2

}
=

f(a) + f(b)

2
,

which completes the proof.

Corollary 2.6. With the notations in Theorem 2.5, if n = 2, then
m∑
j=1

pjf(x1j) + f(a+ b−
m∑
j=1

pjx1j) ≤ f(a) + f(b),

which is analogous to inequality (1.1).

3. Applications in information theory

Definition 3.1. The Shannon entropy of a positive probability distribution
P = (p1, ..., pn) is defined by H(p) :=

∑n
i=1 pi log

1
pi
.

Let x = {xi}ni=1 be a positive real sequence and

An(x) :=
1

n

n∑
i=1

xi and Gn(x) :=

(
n∏

i=1

ai

) 1
n

denote the usual arithmetic and geometric means of {xi}, respectively. From
Theorem 2.1 we conclude the following result.

Proposition 3.2. Let a ≥ 0, xi ∈ [a, b] i = 1, ..., n and An(x) =
a+b
2 , then√

ab ≤ Gn(x) ≤ a+b
2 .

Proof. Setting f(x) = − log x in Theorem 2.1, we get

− log

(
a+ b

2

)
≤ − log(x1)− . . .− log(xn)

n
≤ − log(a)− log(b)

2
.
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Therefore,

log(a) + log(b)

2
≤ log(x1) + . . .+ log(xn)

n
≤ log

(
a+ b

2

)
,

namely

log
(√

ab
)
≤ log(Gn(x)) ≤ log

(
a+ b

2

)
.(3.1)

Since the function log is nondecreasing, the result follows from (3.1).

Proposition 3.3. Let P = (p1, ..., pn) be a positive probability distribution
and 0 < max1≤j≤n pj ≤ 2

n . Then

1. log
(
n
2

)
≤ H(p) ≤ log n.

2. 0 ≤ log n−H(p) ≤ log 2.

Proof. 1. Applying Theorem 2.1 with

f(x) =

{
x log(x) if x ̸= 0
0 if x = 0

,

xi = pi for all i = 1, . . . , n, a = 0 and b = 2
n , we have

1

n
log

(
1

n

)
≤ p1 log p1 + . . .+ pn log pn

n
≤ 1

n
log

(
2

n

)
,

which completes the proof.
2. It follows from (i) that log

(
n
2

)
≤ H(p).

Proposition 3.4. Let f be a convex function on [a, b],
∑n

k=1 pk = 1,
[xij ]n×m be a matrix with a ≤ xij ≤ b for all i(1 ≤ i ≤ n), j(1 ≤ j ≤ m)
and ∑n

i=1 xij

n
=

a+ b

2

for all j(1 ≤ j ≤ m). Then

n

2
(a+ b)−

m∑
j=1

(
pj

n−1∑
i=1

xij

)
≥

√
anbn∏m

j=1

(∏n−1
i=1 xij

)pj
.

Proof. Applying Theorem 2.5 with f(x) = − log x, we get

−
∑m

j=1

∑n−1
i=1 pj log(xij)− log

[
n
2 (a+ b)−

∑m
j=1

∑n−1
i=1 pjxij

]
n

≤ − log(a)− log(b)

2
.

After some calculations the desired assertion follows..
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Corollary 3.5. With the notations in Proposition 3.4, if n = 2 and xj :=
x1j for all j = 1, ...,m, then we have

a+ b−
m∑
j=1

pjxj ≥
ab∏m

j=1 x
pj

j

,

for all {xj} ∈ [a, b].

4. Applications in zeta function

We now provide some applications of Theorem 2.3 in number theory. The
Riemann zeta function is defined as follows:

ζ(s) =
∞∑

n=1

1

ns
, s ∈ C.

Consequently, ζ converges for all complex numbers s such that Re(s) > 1.

Proposition 4.1. Let s > 0 and n be a natural number, then

n2s

(1 + n)s
≤ 1 +

1

2s
+

1

3s
+ . . .+

1

ns
≤ n+ n1−s

2
.

Proof. Let s > 0 and f(x) = x−s. Since f ′′(x) = s(s + 1)x−s−2 > 0,
applying Theorem 2.3 with f(x) = x−s, we obtain(

1 + n

2

)−s

≤ 1−s + 2−s + . . .+ n−s

n
≤ 1 + n−s

2
.

Therefore,

n2s

(1 + n)s
≤ 1 +

1

2s
+

1

3s
+ . . .+

1

ns
≤ n+ n1−s

2
.

Example 4.2. Let n be a natural number and s = 3. Then Proposition
4.1 yields (see figure 1)

8n

(1 + n)3
≤ 1 +

1

23
+

1

33
+ . . .+

1

n3
≤ n3 + 1

2n2
.

Proposition 4.3. Let n be a natural number. Then

1. nn ≤ (n!)2 ≤
(
1+n
2

)2n
.

2.
(
1+n
2

)n+n2

≤ 12 × 24 × . . .× n2n ≤ (n)n
2

.

3. n2n ≤ (n!)4 ≤ (n)n
2

.
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Figure 1. 8n
(1+n)3 , 1 +

1
23 + 1

33 + . . .+ 1
n3 and n3+1

2n2

Proof. 1. On applying Theorem 2.3 for the function f(x) = − lnx, we
get

− ln

(
1 + n

2

)
≤

−
∑n

i=1 ln i

n
≤ − lnn

2
.

Thus,

2n ln

(
2

1 + n

)
≤ 2 ln

(
n∏

i=1

1

i

)
≤ n ln

1

n
.

Hence, nn ≤ (n!)2 ≤
(
1+n
2

)2n
.

2. Since f(x) = x log x is convex on (0,∞), Theorem 2.3 imply that

1 + n

2
ln

(
1 + n

2

)
≤ 1 ln 1 + 2 ln 2 + . . .+ n lnn

n
≤ n lnn

2
.

Therefore,

ln

(
1 + n

2

)n+n2

≤ 2 ln

(
n∏

i=1

ii

)
≤ n2 lnn.

It follows that(
1 + n

2

)n+n2

≤ 12 × 24 × . . .× n2n ≤ (n)n
2

.

3. Since 12 × 24 × . . .× n2n ≥ (n!)4, this result follows from (1) and (2).

5. Conclusion

The Mercer’s inequality and its derivative theorems play an important role
in mathematical analysis. In this paper, we introduced an extension of Mercer’s
inequality for convex functions. Based on these results, we have given some
bounds for zeta function and Shannon’s entropy. We anticipate that the present
results will find some applications in p-series as well as other related disciplines.
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