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Abstract. A new class of univalent functions is defined by making use of the Ruscheweyh

derivatives. We provide necessary and sufficient coefficient conditions, extreme points,

integral representations, distortion bounds, and radius of starlikeness and convexity for

this class.

1. Introduction

Let A denote the family of functions f that are analytic in the open unit disc
∆ = {z : |z| < 1} and consider the subclass T consisting of functions f in A,
which are univalent in ∆ and are of the form f(z) = z−∑∞n=2 anz

n, where an ≥ 0.
For α ≥ 0, 0 ≤ β < 1 and λ > −1, we let D(α, β, λ) consist of functions f in T
satisfying the condition

(1) <
(
z(Dλf(z))′

Dλf(z)

)
> α

∣∣∣∣
z(Dλf(z))′

Dλf(z)
− 1
∣∣∣∣+ β.

The operator Dλf is the Ruscheweyh derivative [2] of f defined by

Dλf(z) =
z(zλ−1f(z))(λ)

λ!
=

z

(1− z)λ+1
∗ f(z) = z −

∞∑
n=2

Bn(λ)anzn

where

Bn(λ) =
(
n+ λ− 1

λ

)
=

(λ+ 1)(λ+ 2) · · · (λ+ n− 1)
(n− 1)!

.

Here the operation ∗ stands for the convolution of two power series f(z) = z −∑∞
n=2 anz

n and g(z) = z −∑∞n=2 bnz
n denoted by (f ∗ g)(z) = z −∑∞n=2 anbnz

n.
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The family D(α, β, λ) is of special interest for it contains many well-known as
well as new classes of analytic univalent functions. In particular, for α = 0 and
0 ≤ λ ≤ 1 it provides a transition from starlike functions to convex functions. More
specifically, D(0, β, 0) is the family of functions starlike of order β and D(0, β, 1)
is the family of functions convex of order β. For D(α, 0, 0), we obtain the class
of uniformly α-starlike functions introduced by Kanas and Wisniowska ([1]), which
can be generalized to, D(α, β, 0), the class of uniformly α-starlike functions of order
β. Generally speaking, D(α, β, λ), consists of functions F (z) = Dλf(z) which
are uniformly α-starlike of order β in ∆. In this paper we provide necessary and
sufficient coefficient conditions, extreme points, integral representations, distortion
bounds, and radius of starlikeness and convexity for functions in D(α, β, λ).

2. Main results

First we provide a necessary and sufficient coefficient bound for functions in
D(α, β, λ).

Theorem 2.1. Let f ∈ T . Then f is in D(α, β, λ) if and only if

(2)
∞∑
n=2

n(1 + α)− (α+ β)
1− β anBn(λ) < 1.

Proof. Suppose that f ∈ D(α, β, λ). Using the fact that < w > α|w − 1|+ β if and
only if <(w(1 + αeiγ) − αeiγ) > β for real γ and letting w = z(Dλf)′/Dλf in (1)
we obtain

<
(
z(Dλf(z))′

Dλf(z)
(1 + αeiγ)− αeiγ

)
> β

or equivalently

<
[

(1− β)−∑∞n=2(n− β)anBn(λ)zn−1 − αeiγ∑∞n=2(n− 1)anBn(λ)zn−1

1−∑∞n=2 anBn(λ)zn−1

]
> 0.

The above inequality must hold for all z in ∆. Letting z → 1− yields

<
[

(1− β)−∑∞n=2(n− β)anBn(λ)− αeiγ∑∞n=2(n− 1)anBn(λ)
1−∑∞n=2 anBn(λ)

]
> 0

and so by the mean value theorem we have

Re

[
(1− β)−

∞∑
n=2

(n− β)anBn(λ)− αeiγ
∞∑
n=2

(n− 1)anBn(λ)

]
> 0.

Therefore ∞∑
n=2

(n(1 + α)− (α+ β))anBn(λ) < 1− β.
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Conversely, let (2) hold. We will show that (1) is satisfied and so f ∈ D(α, β, λ).
Using the fact that <(w) > α if and only if |w− (1+α)| < |w+(1−α)| it is enough
to show that

∣∣∣∣
z(Dλf(z))′

Dλf(z)
−
(

1 + α|z(D
λf(z))′

Dλf(z)
− 1|+ β

)∣∣∣∣

<

∣∣∣∣
z(Dλf(z))′

Dλf(z)
+
(

1− α|z(D
λf(z))′

Dλf(z)
− 1| − β

)∣∣∣∣ .

For letting eiφ = Dλf(z)
|Dλf(z)| we may write

E =
∣∣∣∣
z(Dλf(z))′

Dλf(z)
+
(

1− α|z(D
λf(z))′

Dλf(z)
− 1| − β

)∣∣∣∣

=
1

|Dλf(z)|
∣∣z(Dλf(z))′ + (1− β)Dλf(z)− αeiφ|z(Dλf(z))′ −Dλf(z)|

∣∣

>
|z|

|Dλf(z)|

[
(2− β)−

∞∑
n=2

(n+ 1− β + nα− α)anBn(λ)

]
.

and

F =
∣∣∣∣
z(Dλf(z))′

Dλf(z)
−
(

1 + α|z(D
λf(z))′

Dλf(z)
− 1|+ β

)∣∣∣∣

=
1

|Dλf(z)|

∣∣∣∣∣−βz −
∞∑
n=2

(n− 1− β)anBn(λ)zn − αeiφ|
∞∑
n=2

(1− n)anBn(λ)zn|
∣∣∣∣∣

<
|z|

|Dλf(z)|

[
β +

∞∑
n=2

(n− 1− β + nα− α)anBn(λ)

]
.

It is easy to verify that E − F > 0 if (2) holds and so the proof is complete. �

Remark 2.2. The above theorem for the special cases D(0, β, 0) and D(0, β, 1)
lead to results obtained by Silverman ([3]).

Remark 2.3. SinceBn(λ2) < Bn(λ1) for λ2 < λ1 we note thatD(α, β, λ1)⊂D(α, β, λ2).
The extreme points and integral representation for the class D(α, β, λ) are given

in the next two theorems.

Theorem 2.4. Let f1(z) = z and fn(z) = z − 1−β
[n(1+α)−(α+β)]Bn(λ)z

n where n =
2, 3, · · · . Then f ∈ D(α, β, λ) if and only if it can be expressed in the form f(z) =∑∞
n=2 µnfn(z) where µn ≥ 0 and

∑∞
n=1 µn = 1. In particular, the extreme points of

D(α, β, λ) are the functions f1(z) = z and

fn(z) = z − (1− β)
[n(1 + α)− (α+ β)]Bn(λ)

zn, n = 2, 3, · · · .
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Proof. First let f be expressed as in the above theorem. This means that we can
write

f(z) =
∞∑
n=1

µnfn(z) = z −
∞∑
n=2

(1− β)µn
[n(1 + α)− (α+ β)]Bn(λ)

zn = z −
∞∑
n=2

tnz
n.

Therefore f ∈ D(α, β, λ) since

∞∑
n=2

n(1 + α)− (α+ β)
1− β tnBn(λ) =

∞∑
n=2

µn = 1− µ1 < 1.

Conversely, suppose that f ∈ D(α, β, λ). Then, by (2), we have

an <
1− β

[n(1 + α)− (α+ β)]Bn(λ)
, n = 2, 3, · · · .

So, we may set

µn =
[n(1 + α)− (α+ β)]Bn(λ)

1− β an, n = 2, 3, · · ·

and µ1 = 1−∑∞n=2 µn. Then

f(z) = z −
∞∑
n=2

anz
n = z −

∞∑
n=2

1− β
[n(1 + α)− (α+ β)]Bn(λ)

µnz
n

= z −
∞∑
n=2

µn[z − fn(z)]

=

(
1−

∞∑
n=2

µn

)
z −

∞∑
n=2

µnfn(z) =
∞∑
n=1

µnfn(z).

This completes the proof. �
For α = λ = 0 and α = λ− 1 = 0 we obtain the following respective corollaries

which have also been obtained by Silverman ([3]).

Corollary 2.5. Let f1(z) = z and fn(z) = z − 1−β
n−β z

n, n = 2, 3, · · · then f ∈
S∗(β) if and only if it can be expressed in the form f(z) =

∑∞
n=1 µnfn(z), µn ≥

0,
∑∞
n=1 µn = 1.

Corollary 2.6. Let f1(z) = z and fn(z) = z − 1−β
n(n−β)z

n, n = 2, 3, · · · , then
f ∈ K(β) if and only if it can be expressed in the form f(z) =

∑∞
n=1 µnfn(z), µn ≥

0,
∑∞
n=1 µn = 1.

The following theorem provides integral representations for Dλf.
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Theorem 2.7. Let f ∈ D(α, β, λ) then

(3) Dλf(z) = exp

(∫ z

0

α+ βQ(t)
t(α−Q(t))

dt

)

where |Q(z)| < 1. Also

(4) Dλf(z) = z exp
(∫

x

log(α− xz)−(1+β)dµ(x)
)

where µ(x) is probability measure on X = {x||x| = 1}.
Proof. The case α = 0 is obvious. Let α 6= 0. Then for f ∈ D(α, β, λ) and
w = z(Dλf(z))′

Dλf(z)
we have < w > α|w− 1|+ β. Therefore

∣∣∣w−1
w−β

∣∣∣ < 1
α and w−1

w−β = Q(z)
α

where |Q(z)| < 1. This yields

(Dλf(z))′

Dλf(z)
=

α− βQ(z)
z(α−Q(z))

and therefore

Dλf(z) = exp
(∫ z

0

α− βQ(t)
t(α−Q(t))

dt

)
.

For the second representation, set X = {x : |x| = 1}. Then we have, w−1
w−β = 1

αxz or

(Dλf(z))′

Dλf(z)
=

α− βxz
z(α− xz) ⇒ log

Dλf(z)
z

= −(1 + β) log(α− xz).

If µ(x) is the probability measure on X then

Dλf(z) = z exp
(∫

X

log(α− xz)−(1+β)dµ(x)
)
.

�
Next we obtain a distortion bound for Dλf.

Theorem 2.8. Let f ∈ D(α, β, λ), then

(5) |z| − 1− β
2− α− β |z|

2 < |Dλf(z)| < |z|+ 1− β
2− α− β |z|

2.

Proof. For f ∈ D(α, β, λ) we have
∑∞
n=2 anBn(λ) < 1−β

2−α−β . Therefore

|Dλf(z)| ≤ |z|+
∞∑
n=2

anBn(λ)|z|n ≤ |z|+ |z|2
∞∑
n=2

anBn(λ) < |z|+ 1− β
2− α− β |z|

2,
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and

|Dλf(z)| ≥ |z| −
∞∑
n=2

anBn(λ)|z|n ≥ |z| − |z|2
∞∑
n=2

anBn(λ) > |z| − 1− β
2− α− β |z|

2.

�
Finally, we obtain the radius of starlikeness and convexity.

Theorem 2.9. Let f ∈ D(α, β, λ). Then f(z) is starlike of order µ (0 ≤ µ < 1) in
|z| < r(µ, α, β, λ) where

(6) r(µ, α, β, λ) = inf
n

[
[n(1 + α)− (α+ β)](1− µ)

(1− β)(n− µ)
Bn(λ)

] 1
n−1

.

Proof. For 0 ≤ µ < 1 we need to show that
∣∣∣ zf ′(z)f(z) − 1

∣∣∣ < 1− µ. In other words, it
is sufficient to show that

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∑∞
n=2(n− 1)an|z|n−1

1−∑∞n=2 an|z|n−1
< 1− µ

or

(7)
∞∑
n=2

n− µ
1− µ an|z|

n−1 < 1.

It is easy to see that (7) holds if

|z|n−1 <
[n(1 + α)− (α+ β)](1− µ)

(1− β)(n− µ)
Bn(λ).

This completes the proof. �

Upon noting the fact that f is convex if and only if zf ′ is starlike, we obtain

Theorem 2.10. Let f ∈ D(α, β, λ). Then f(z) is convex of order µ (0 ≤ µ < 1)
in |z| < r(µ, α, β, λ) where

r(µ, α, β, λ) = inf
n

[
[n(1 + α)− (α+ β)](1− µ)

n(1− µ)(n− µ)
Bn(λ)

] 1
n−1

.
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