• Title/Summary/Keyword: robustness

Search Result 4,448, Processing Time 0.026 seconds

Robustness of Bimodal Speech Recognition on Degradation of Lip Parameter Estimation Performance (음성인식에서 입술 파라미터 열화에 따른 견인성 연구)

  • Kim Jinyoung;Shin Dosung;Choi Seungho
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods with lip reading experiments. Also, a measure of lip parameter degradation is proposed. This measure can be used in the determination of weighting values of video information.

  • PDF

Model Following Acceleration Control Strategy for the Robustness Control of DC Servo Position Control Systems (직류서보 위치제어시스템의 강인성 제어를 위한 모델추종 가속도제어기법)

  • Park, Young-Jeen;Cha, Min;You, Young-Suk;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.270-273
    • /
    • 1996
  • A scheme of observer-based MFAC(Model Following Acceleration Control) system is proposed for the robustness control of DC servo position control systems. The proposed system is composed of LMFC, variable structure feedback controller, and reduced-order state observer. As the servo motor is controlled by the acceleration command, the total servo system becomes the acceleration control system. Simulation results show that the proposed system have robust properties against parameter variations and external disturbances.

  • PDF

Output Voltage Control Method of Switched Reluctance Generator using the Turn-off Angle Control

  • Kim Young-Jo;Choi Jung-Soo;Kim Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.414-417
    • /
    • 2001
  • SRG (Switched Reluctance Generator) have many advantages such as high efficiency, low cost, high-speed capability and robustness compared with characteristics of other machines. However, the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using PID controller that only controls turn-off angles while keeping turn-on angles of SRG constant. The linear characteristics between the generated current and the turn-off angle can be used to control the turn-off angle for load variations. Since the reference current for generation can be produced from an error between the reference and the real voltage, it can be controlled to keep the output voltage constant. The proposed control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and speed sensors. The proposed method is verified by experimental results.

  • PDF

Intelligent adaptive controller for a process control

  • Kim, Jin-Hwan;Lee, Bong-Guk;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.378-384
    • /
    • 1993
  • In this paper, an intelligent adaptive controller is proposed for the process with unmodelled dynamics. The intelligent adaptive controller consists of the numeric adaptive controller and the intelligent tuning part. The continuous scheme is used for the numeric adaptive controller to avoid the problems occurred in the discrete time schemes. The adaptive controller is adopted to the process with time delay. It is an implicit adaptive algorithm based on GMV using the emulator. The tuning part changes the design parameters in the control algorithm. It is a multilayer neural network trained by robustness analysis data. The proposed method can improve the robustness of the adaptive control system because the design parameters are tuned according to the operating points of the process. Through the simulation, robustnesses are shown for intelligent adaptive controller. Finally, the proposed algorithms are implemented on the electric furnace temperature control system. The effectiveness of the proposed algorithm is shown from experiments.

  • PDF

A Robustness of Hierarchic Element Formulated by Integral s of Legendre Polynomial (적분형 르장드르 함수에 의한 계층요소의 통용성)

  • 우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.75-80
    • /
    • 1991
  • The purpose of this study is to ascertain the robustness of p-version model with hierarchic intergrals of Legendre shape functions in various applications including plane stress/strain, axisymmetric and shell problems. The most important symptoms of accuracy failure in modern finite elements are spurious mechanisms and a phenomenon known as locking which are exhibited for incompressible materials and irregular shapes which contain aspect ratios(R/t, a/b), tapered ratio(d/b), and skewness. The condition numbers and energy norms are used to estimate numerical errors, convergence characteristics and algorithmic efficiencies for verifying the aforementioned symptoms of accuracy failure. Numerical results from p-version models are compared wi th those from NASTRAN, SAP90, and Cheung's hybrid elements.

  • PDF

Warpage Minimization in the Injection Molded Decorating Panel of Monitor by Considering Robustness (강건성을 고려한 모니터 장식패널 사출품의 휨 최소화)

  • Kwon O. K.;Park J. C.;Kim K. M.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An optimal robust design methodology has been developed to minimize the warpage in a decorating panel of monitor molded by the plastic injection. For the associated methodology, the Taguchi's Design Of Experiment (DOE) based on orthogonal arrays and Signal-to-Noise Ratio is combined with commercial simulation tools f3r injection molding. An optimal robust design solution is statistically resulted from the computational simulation. The related experiment was done for evaluations of the warpage in the decorating panel part of monitor. This research showed that the warpage under the applied optimal design conditions was comparatively reduced.

Robust Algorithms for Combining Multiple Term Weighting Vectors for Document Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Term weighting is a popular technique that effectively weighs the term features to improve accuracy in document classification. While several successful term weighting algorithms have been suggested, none of them appears to perform well consistently across different data domains. In this paper we propose several reasonable methods to combine different term weight vectors to yield a robust document classifier that performs consistently well on diverse datasets. Specifically we suggest two approaches: i) learning a single weight vector that lies in a convex hull of the base vectors while minimizing the class prediction loss, and ii) a mini-max classifier that aims for robustness of the individual weight vectors by minimizing the loss of the worst-performing strategy among the base vectors. We provide efficient solution methods for these optimization problems. The effectiveness and robustness of the proposed approaches are demonstrated on several benchmark document datasets, significantly outperforming the existing term weighting methods.

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

A Robustness Control of Magnetic Levitation System Using Linear Matrix Inequality (선형행렬부등식을 이용한 자기 부상계의 강인성 제어)

  • Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.79-85
    • /
    • 1999
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor system because of little friction, no lubrication, no noise and so on. The magnetic levitation system needs the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper gives a controller design method of magnetic levitation system which satisfies the given $H_{\infty}$ control performance and the robust stability of the presence of physical parameter perturbations. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF

Multivariable Control System Design for Magnetic Bearing (자기베어링에 대한 다변수 제어계 설계)

  • Choung, K.G.;Yang, J.H.;Kim, C.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.78-85
    • /
    • 2011
  • In order to design the control system of the magnetic bearing for the high speed 3 phase induction motor, the mathematical modeling was conducted and LQ regulator system was designed. When the plant is controllable and detectable, the nominal stability of LQ regulator could be guaranteed. However, LQ regulator doesn't ensure the robustness of stability and performance for the real system because LQ control is the mathematical optimal theory. In this paper to ensure the robustness of stability and performance for the real system, the control systems are designed by the simulation to the variation system parameters and this method was confirmed as an effective means.