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Abstract

In this paper, an intelligent adaptive controller is
proposed for the process with unmodelled dynamics. The
intelligent adaptive controller consists of the numeric
adaptive controller and the intelligent tuning part. The
continuous scheme is used for the numeric adaptive
controller to avoid the problems occurred in the discrete
time schemes. The adaptive controller is adopted to the
process with time delay. It is an implicit adaptive
algorithm based on GMV using the emwulator.

The tuning part changes the design parameters in the
control algorithm. It is a multilayer neural network trained
by robustness analysis data. The proposed method can
improve the robustness of the adaptive control system
because the design parameters are. tuned according to the
operating points of the process.

Through the simulation, robustnesses are shown for
intelligent adaptive controller. Finally, the proposed
algorithms are implemented on the electric furnace
temperature control system. The effecliveness of the
proposed algorithm is shown from experiments.

1. Introduction

Recently, rescarch on adaptive control has focused on
guaranteeing global _stability and robustness on  plant
dynamics uncertainties or variations.

Robustness analysis of the adpative control is discussed
lively on early 1980's. Narendra(l], Morse(2], Egardt{3], and
Goodwin{4] demonstrated stability of the adaptive control
for some assumptions —upper bound of system order,
relative degree, magnitude of high frequency gain of
process transfer function, nonminimum phase system, time
invariant and no disturbance. Further, Narendra[5],
Goodwin[6], and Samson|[7] proved stablility to system
with finite disturbance.

However, Adaptive control may have the weakness for
practical application when it doesn’t consider uncertaintics
of plant model. Athans[8] detected problem of feedback
loop system with unmodelled dynamics. Rohr[9] indicated
that control input includes the frequency exciting high
frequency unmodelled component if there exist unmodclled
dynamics and noise component in the system. For solving

problems of model uncertainty, many rescachers have
investigated roubustness in the view of the practical issue.
Anderson and Johnson[10] showed robustness according to
variant parameter when controller is satisfied with

" PE(Persistemtly Excitation) condition by analysing response.

Ortega[11] designed controller which is able to solve
unmodelled dynamics problem by adjusting observer pole
of indirect adaptive controller. Adaptive controller which is
satisfied with Tlocal stability is designed by Kosut, who
introduced SGT(Small Gain Theorem){12]. Also, Gawthrop
and Lim[13] applied SGT to self tuning regulator in order
to satisfy stability range. Likewise, many researchers have
studied in order to improve robustness of plant under
uncertainties.

In this paper, we design the intelligent adaptive
controller for the process. The proposed controller includes
neural network tuning part in order to improve robustness.
Artificial neural nertworks can be have applied sucessfully
in various field and a good approximation to the
nonlinearity. For improving robustness, we introduce the
control weighting parameter guarantecing stable response.
In control, it is tuned by neural network. The numperical
adaptive controller algorithm is GMV and is designed in
continuous domain for reducing some problems (sampling
period, nonminimun phase, time delay)

2. Hybrid Adpative Controller

Consider SISO(Single Input Single Output) plant with
time delay.

y(s) = e”T%g—u(s) * ]Q(%))—L'(s) )

where u(s) is plant input, y(s) is plant output, v(s) is

disturbance, 7 is time delay, and

A(S) = ans” + dnas™ 4 kg 2
BCSY = bms™ +bmys™ T+ o +my @)
Cls) = cus® + cxas*™ + -+ g @)
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It needs emulator in order to compensate time delay of
system. Emulator is also able to compensate unstable zero,
relative degree larger than zero. Emulator is following,

as) = 7Ll () )
where ¢7 is predictor, P(s) is differentiator, Z(S) is
zero-cancellation compensator. For implementaion,
exponential  function is  approximated by  pade
approximation method

D(s)
e D(-5) ©

1

where D(s) = das” + daas™ + -+ dis + 1

The Emulator can be rewritten by substituting (6) into (5)

o(s) = 7 JZ—’&%‘)’(S)

. Pls) _Bls) LD Pls) _C(s)
= Zis) “Als) WS Dmey Zis) Al U (D)

In (7), second term is scperated by Z(s) = Z'(s)7 (s),
Z'(s) has the root in LHP(Left Half Plane) and 7 (s) has
the root in RHP(Right Half Plane). It represents following
diophantine equation for seperating two terms.

D(s)P(s)C(s)  _
D(-5)Z(s)A(s)

E(s)

I(s)
D(-5)Z7(s) @

Z'($)A(s)

where  E(s), F(s)
obtained by solving diophantine equation. Now, subsituting

(8) into (7) gives

are unknown polynomials and are

F(s) E(s)

o Us)B(s) . .
s =[=Z A ¥ 7 SAS) Ju(s) Doz (9 V)
= 9" (s) + e (s) 9
where 6¢°(s) is able to implement and e'(s) is
implementation error.
ey P(S)BLs) 5 I(s) ___F()D(-5)B(s)
O = Z DA Y T @ YT 7 (90ADCE)
. F(s) E(s)B(s)

uls)

70 " oz

= 0y(s) + 0uls) (10

Control input is generated by the following equation and
overall feedback control system is illustrated in fig. 1.

u(s) = —aﬁ;[w(s%‘b'(s)] (11)
- 05
Qs) = ~5%% (12)

Control weighting transfer function Q(s) is used in order

to improve robustness of system.
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Fig. 1. Feedback Control System

From fig. 1, loop gain (L(s)) and feedback transfer
function is obtained as following

st__L
+

_ - (s) _Z(s) bt . 1 C(s)
)= eI ptsy ol €T ) TR TAGy U

(13)

ol 1 _ o LS)P(s) .
us)= TTie) O {wis)-e Al)Z(s) Vis)+e ()] (14)

__1_ B(s) DP(s)
L(s)= 5oy "Als) 2o (15)

Eq. (13), (14) are feedback transfer functions to output,
input. Loop gain is represented in (15). From (14) and (15),
time delay factor dosen’t influence to the denominator of

charateristic polynomial 1+L(s). That is, ideal stabililty of
feedback system doesn’t relate to time delay. As Q(s) is
close to zero, transfer function to reference input is
Z(s)/P(s). This paper assume following condition so that

it has detuned MRAC.

Z'(s) = 1 (16.2)
Z'(s) = Ples)y, 0 <& <1 (16.b)

For estimating the patameters of a process, it is
necessary to have estimation method that update the

parameters recursively. Least squares estimation method is
a basic technique for parameter estimation. System can be
defined for a mathmatical model that can be written in the
form

y(£) = w)70

17

where y is system output, ¢ are known variables, 8 are
unkown parameters.
The least squares error can be written by

e(t) = y(t) - y(i) = y(t) -~ 07 (1M (18)
The cost function can be now written as
viB, = *%‘;e(i)z - —ZLg(ymfwTe)’ (19)

Assume & is [07(1) ~ 9"(£)]. Then for obtaining the

minimum cost function

B=(0"e)'eTy (20)
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In adaptive controller, the observations are obtained
sequentially in real time. It is desirable to make the
computations recursively in order to save computation
time.

By = (gw(u)tf(i))"(gw(i)y(i)) = l’(t)(gw(i)y(i))

= P(ex gw(i)y(i) + 0(t)y(e))

where S0l = PO B-1) - 8007 (0d(e-1)
The estimate at time t can be written as

By = Be-D-Plo( ™ (08(t-1)+ PeXo(t)y() @
= Ble-D+K(O(()-0T (0 B(-1))

where K(t) = P(to(t)

The case of slowly time-varying parameters can be
replaced the least squares cost function with

v = Lo ,);(ym—wT ()62 (23)

where )\ is forgetting factor, 0 < : <1

Recursive least squares method that uses (23) is called
exponential forgetting RLS(ERLS) and ERLS[14] is given by

B(e) = BLe-1+ KDy (0-0T(6)B(e-1))
Kb

1l

P (24)

PO = (I-KoT (t)P(t-1) / %

"

Direct(Implicit) adaptive controller is constructed with
emulator and least square estimator. Direct adaptive
controller estimates parameter of emulator directly and
then designs controller. For comparing between emulator
output and actual output, realizability filter is introduced.
Filtered emulator #a(s) is following

oa(s) = Ash(s) (25)
A(s) choose following so that y(1) = ®a(s).

Z(s

- -sT
A(s) 7 e B(s)

(26)

Continuous adaptive controller has to convert discrete
adpative one so that it works on digital computer. we call
it FHybrid adaptive controller. Controller designed in
continuous domain is able to overcome problems occured
in discrete control —sampling period, plant zero, fractional
time delay, etc al. Overall Hybrid adaptive controller
consists of controller and estimator.

Discrete control input is generated by

u(2) = —Q—(l;)—(wm - 02 @n

v{s)

uois) M u(s)

Fig 2. System with unmodelled dynamics
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Fig 3. Error model system

For discretization, we uses following bilinear transformation

oo %5k e

Design procedure of the control system is following

Step 1) Determine the P(s), Z(s). C(s), Q(s)

Step 2) Determine the plant order and sampling period

Step 3) Build the discrete predictor $(2) corresponding to
the continuous predictor ¢(s)

Step 4) Build the discrete controller as (27)

3. Robustness Analysis

It is necessary to consider robustness of adaptive
controller in order to apply the adaptive controller to the
plant.  For analysing robustness, assume the plant with
unmodelled dynamics in presence as fig. 2.

As shown in fig. 2, both u(s) and yo(s) are affected
by Ni(s), N2(s), repectively. Error equation of direct

adpative controller can be decribed as
e(s) = e - M(s)(e(s) + M(s)els)) (29)

where g(s) is filter induced error, é(s) is estimation
error, e(s) is observation error, e ?(s) is disturbance and
setpoint induced error.

Fig. 3 shows error model system. M(s) is induced by
considering unmodelled transfer function N(s) in presense

between output of controller and input of systemn and

. ZUSEGA(s) _ N'(9)-1

M(s) P(s)C(s) 1+L T (s)N(s) 0
_ _Aa(s)

MO = B 6D

From fig. 3, 2 is transfer function of estimation system.
In order to stablilize the system with unmodelled
dynamics by small gain theorem(13], it is satisfied with
following conditions,
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Assumption 1) N(s) is stable
Assumption 2) G(s) is stable

_ L(s)
Gls) = “JTL(9N(s)

Assumption 3) gain of M(s) is less than 1

From (13), (30), and (31), M(s), L(s)N(s) is given as

- B E()Qu($IAZ ()N An (5)- By (5)] 32
M(S) = =35 )gsA(S) Z(s)AN () * Qa (5IB(IP(S) Bn ()]

. _Q4(s)B(s)P(s)Bn(s)
LISINGS) = = 12 (5)An(S) ©3)

Now, it illustrates procedure of choosing the control
weighting parameter in order to stabilize the plant under
the unmodelled dynamics. First, Identify  whether -
unmodelled dynamics N(s) is stable. Second, choose the
stable polynomial, P(s). Cls) and find weighting value ¢
stablizing G(s). Here, limilation of o is defined in
Root-Locus of open-loop transfer function L(s)N(s)
including unmodelled component. Third, apply ¢ to M(s)
and identify whether magnitude of M(s) is less than 1
from Nyquist plot and Bode plot. Finally, untill get the
range of g satisfying the stable condition, repeat the
procedure.

4. Intelligent tuning of Adaptive
Controller

Intelligent adaptive controller is shown in fig. 4. It
consists of two part, control parameter tuning part and
direct adpative control part. The tuning part is built by
using muitilayered neural networks. For determining the
g, inputs of neural network use output error, derivative
output error of plant. As showing the table -1, approriate
q is selected by the time response of plant.

Table 1. Normalization data for parameter ¢
[4 I 105 0 0 0 |05 ) 1

de 1 i 1 0.5 0 0 6 |05
q 0 {05 1 0.5 i 05 {05 |05

Overall structure of intelligent adaptive controller s
following fig. 4.

5. Case study and Simulation Results
In this section, we analysis robusiness of plant with
unmodelled dynamics and simulate adaptive controller

with fixed g and proposed inlelligent adaptive controller.

Example) Set the control weighting parameter  for
robustness.

Assume the plant with first order time dclay,

unmodetled component is second order system.

Neursl
Networl

Estimator }-
Process l—v—b y

LA?—‘Fontmller

Fig. 4. Intelligent Adaptive Control system

Bls) _ __1 o7
Als) ©~ THs+1°¢ (34)
i} 100
Ns) = “F T < 100 35)

Set the parameter g in case 7=1, 7=3 and
P(s), C(s), Z(s) is given following

P(s) = C(s) = s + 001 (36)
Z(s) = 01s + 001 37

First, determine the lower bound of ¢ from Root-Locus.
In fig. 5, when ¢ is 0052, it locates on the boundary of
unstable region and it can be located on the stable region
by bigger ¢. Next, as above condition, range of ¢ is
known by Nyquist plot of M(s) and is shown in fig. 6.
Also, because time delay factor affects the maginitude of
M(s), q is needed to be adjusted. That is, for getting the
M(s) less than 1, we have to take large q. This results is
illustrated in fig. 7.

5.1 Roubustness of plant with time delay

Now, we investigate robustness to the system with time
delay including unmodeiled dynamics. Consider following
simulation model

Gs) = —=qyre (38)

unmodelled dynamics and design polynomial is following

5

Np:(s) = Ty (39)
Nals) = e’ (40)
P(s) = Cls) = 1 + 035, z(s) =1+ 003 (a1

For control weighting value g, use to the procedure in
section 4. Because the effect of time delay does not present
in Root Locus, g is determined in Nyquist plot about
M(s). Fig. 8(a) shows the result of unmodelled dynamics
about pole-zero in Nyquist plot. The effect of unmodelled
time delay in Nyquist plot is illustrated in fig. 8(b). As
showing the Nyquist plot, we know that ¢ is large for

unmodelled dynamics. Time response about g is shown in

fig. 9(a)(d).
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52 Comparison intelligent adaptive controller
and fixed q paramter adaptive controller
Consider the plant with time delay and unmodelled

dynamics
Gls) = —o—e™ 42
50s + 1
X 0
Nants) =~ (43)
; 001
Nen(s) = 776 ms70.01 (44)

we choose large g which is 50 for considering robustness.
Sampling time is 1 second for discretization. Simulation
results is shown in fig. 10 and fig. 11

From fig. 10, as unmodelled pole is close to zero, it
shows initial large overshoot and unstable steady state .

From fig. 11, even unmodelled pole is close to zero, it
improves overshoot and unstable steady state. For tuning
.the parameter, trainig rate of neural network is 0.9 and the
number of neuron per layer are 2, 6, 1.

6. Experiment results.

Now, we assess the proposed intelligent adaptive
algorithm through applyiﬁg electric furnace system. The
configuration of electric
illustrated in fig. 12.

furnace control system s

Electric furnace control system consists of five part,
Electric furnace process, IBM-PC, sensor part, PWM
generator, PIO(programmable input output) interface part.
First, for comparision, Pl controller is applied to the
electric fumace and sampling period 10 seconds. Fig. 13
shows the result of PI control to the electric furnace.

The parameter of PI controller is adjusted by
Ziegler-Nichols tuning method.  Each parameter is set to
K=1.912, Ti=1152.

Now, apply proposed Intelligent adaptive control to the
electric furnace in fig. 14. In comparision, it improves
overshoot than PI control. Further, if neural network is
sufficiently trained, control weight ¢ is set more approriate

to the variable operating point.

7. Conclusion

This paper proposed intelligent adpative controller for
effective control the process. It includes direct adaptive
controller
investigates robusitness te the unmodelled dynamics.

considering  plant  with time delay and
Intelligent adaptive controller contains on-line tuning part

using  multilaycred  neural network  for  improving

robustness of plant with unmodelled dynamics. Through

the simulation and experiment, we conclude the following.

1) Analysis the robustness to the plant including the
unmodelted dynamics.

2) we know that it is nceded to get large g for

unmodelled large time delay, high order pole-zero
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Fig. 14. Intelligent adaptive control

3) A simulation study shows that intelligent adaptive
controller improves the robustness of plant. That is, as
using the neural network, it is able to get the

approriate control weigthing parameter g for improving
the robustness of plaht.

4) In experiment, Intelligent adaptive control shows better
time response than Pl control.
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