• 제목/요약/키워드: robust actuator

검색결과 235건 처리시간 0.023초

정합조건이 만족되지 않는 불확실한 다변수 계통에 대한 슬라이딩 모드 제어기의 설계 (Design of sliding mode controller for uncertain multivariable systems in the absence of matching conditions)

  • 천희영;박귀태;김동식;임성준;공진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.439-445
    • /
    • 1990
  • All models of dynamical systems invariably have some measure of uncertainties associated with some of their dynamics. The recent approaches to establish robustness of stabilizing feedback control against the possible uncertainties have a serious limitation, that is their applicability only to the systems that satisfy the matching conditions. Such conditions are rarely met in general applications. If a particular system satisfies the matching conditions, the addition of an actuator will destroy the satisfaction of such conditions. In this paper, we develop robust control algorithm for uncertain multivariable systems in which the matching conditions are not necessarily met. We empoly Lyapunov's second method to derive robust stabilizing controllers which guarantee asymptotic stability against prescribed uncertainties. The derivation consists of transforming the original uncertain system to controllable canonical form and constructing a constant switching surface by designing the closed-loop characteristics as a function of the uncertainties. Numerical examples are discussed as illustrations.

  • PDF

Robust Control for Free-Joint Manipulators

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.519-524
    • /
    • 1998
  • This paper presents a robust control scheme of free-joint manipulators to overcome actuator failures and uncertain-ties in Cartesian space where tasks are planned. The control scheme has the adaptation law for the upper bound on the norm of uncertainties through the Lyapunov function approach. To solve the dynamic singularity problem in the controller, the singular and nonsingular regions are investigated based on a computer simulation. Then a singularity-free Cartesian trajectory planning is achieved in order to guarantee the availability of the control scheme. To illustrate the validity of the proposed control scheme, simulation results for a three-link planar robot arm with a free joint are shown.

  • PDF

로보트 매니퓰레이터의 궤적 추종을 위한 강인한 적응제어기의 설계 및 구현 (A Robust Adaptive Controller Design and Implementation for Tracking control of Robot Manipulator)

  • 조원영;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.305-307
    • /
    • 1994
  • In this paper, the desist and the implementation of a robust adaptive controller for trajectory tracking control of the robot manipulator is presented. The proposed control scheme ensures that without any prior knowledge of the robot manipulator parameters, tracking errors are converged to some boundary in the presence of a state-dependent input disturbances as well as the ideal case. The 3 DOF robot manipulator including actuator dynamics is used for the implementation of the proposed control scheme. The experimental results show that the proposed control scheme is valid for trajectory tracking control of the robot manipulator.

  • PDF

수중운동체에 대한 $H_{\infty}$ 제어기 설계와 비선형 시뮬레이션 (Design of $H_{\infty}$ Controller for Underwater Vehicle and Nonlinear Simulation)

  • 전찬식;김종해박홍배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.215-218
    • /
    • 1998
  • In this paper, we design the $H_{\infty}$ controllers satisfying robust stability and performance for underwater vehicle. The underwater vehicle has computations delay time and input delay. In addition, there exist parameter uncertainties by the roll motion coefficient error, buoyance error, and gravity error. We design the $H_{\infty}$ controllers using model-matching method and check the performance of the proposed controller by nonlinear simulation which includes time delay model, sensor error model, and actuator model.

  • PDF

가변 부하를 받는 전기 기계 시스템의 강인 제어 (Robust control of Electric Machine System Subject to Variable Load)

  • 송재복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.697-702
    • /
    • 1997
  • Control system of electric machine systems is often required to provide the good control performance even in the presence of various variable loads. In this study, time delay control technique is adopted to overcome such variable loads. Also, in this research a new approach of avoiding saturation by varying the reference model for the time delay control based systems subject to the step changes in reference inputs. These schemes are verified by applications to the position controls of the AC servo motor system and the engine throttle actuator.

  • PDF

고속 위치제어계의 강인 $H_\infty$ 제어 (Robust $H_\infty$ Control of High-Speed Positioning Systems)

  • 최진택;김종식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.342-347
    • /
    • 1995
  • Loop shaping $H_{\infty}$control with normalized coprime factorization was applied to a servo-motor driven high-speed powitioning system. The high-gain controller was designed to attenuate the postion errors caused byfriction effects and extermal disturbances. The non-existence of limit cycle was analyzed, though there is actuator saturation. The designed $H_{\infty}$control system was experimently tested in a rotary index table. Results showed its effectiveness to improve postion accuracy with out any compensation scheme for friction, and robustness to model perturbation and external disturbances.ces.

  • PDF

Robust Position Control of One DOF Mechanical Systems Using Dual PIOs Without Velocity Measurement

  • Han, Minsoo;Lee, Cho Won;Yook, Joo-Hyoung;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.356-362
    • /
    • 2017
  • This paper presents a robust position controller for a one degree-of-freedom (DOF) mechanical system using only position measurement. In order to alleviate the performance degradation owing to various uncertainties, a two-stage design method is studied by employing a proportional integral observer (PIO). In the first stage, a baseline backstepping controller is designed for a nominal system without accounting for uncertainties. The PIO is developed for estimating both the velocity information for the backstepping controller and an equivalent input disturbance for a feedforward compensation using the estimated uncertainty. It is shown that the estimation errors with the proposed PIO can be made arbitrarily small in a finite time. If the system suffers from undesirable actuator nonlinearities, however, it might be necessary to estimate the velocity and the disturbance with different rates of convergence. The proposed method combines the predesigned backstepping controller and dual PIOs to reduce mechanical vibrations as well as steady-state errors. The performance of the proposed method is tested through comparative computer simulations and experiments using a laboratory prototype.

Development of Textured 0.37PMN-0.29PIN-0.34PT Ceramics-Based Multilayered Actuator for Cost-Effective Replacement of Single Crystal-Based Actuators

  • Temesgen Tadeyos Zate;Jeong-Woo Sun;Nu-Ri Ko;Bo-Kun Koo;Hye-Lim Yu;Min-Soo Kim;Woo-Jin Choi;Soon-Jong Jeong;Jae-Ho Jeon;Wook Jo
    • 한국전기전자재료학회논문지
    • /
    • 제36권4호
    • /
    • pp.362-368
    • /
    • 2023
  • Multilayered actuators using Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3 (PMN-PIN-PT) crystals have demonstrated excellent properties, but are costly and lack mechanical strength. Textured PMN-PIN-PT ceramics exhibit robust mechanical strength and comparable properties to their single crystals form. However, the development of multilayered actuators using textured PMN-PIN-PT ceramics has not been achieved until now. This study presents the development of a multilayered actuator using textured 0.37PMN-0.29PIN-0.34PT ceramics with an Ag0.9/Pd0.1 inner electrode, co-fired at 950℃. A random 0.37PMN-0.29PIN-0.34PT ceramics multilayered actuator was also developed for comparison. The multilayered actuator consisted of 9 ceramic layers (36 ㎛ thickness) with an overall actuator thickness of 0.401 mm. The textured and random 0.37PMN-0.29PIN-0.34PT ceramics-based multilayered actuators achieved displacements of 0.61 ㎛ (0.15% strain) and 0.23 ㎛ (0.057% strain) at a low applied peak voltage of 100 V. These results suggest that the developed multilayered actuator using high-performance textured 0.37PMN-0.29PIN-0.34PT ceramics has the potential to replace expensive single crystal-based actuators cost-effectively.

VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계 (A HDD Latch Design Using Electro-magnetic Force of VCM Actuators)

  • 김경호;오동호;신부현;이승엽
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.

IMV를 이용한 굴착기 작업장치 궤적제어 (Trajectory Control of Excavator Actuators Using IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.