DOI QR코드

DOI QR Code

Development of Textured 0.37PMN-0.29PIN-0.34PT Ceramics-Based Multilayered Actuator for Cost-Effective Replacement of Single Crystal-Based Actuators

  • Temesgen Tadeyos Zate (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jeong-Woo Sun (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Nu-Ri Ko (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bo-Kun Koo (Energy Conversion Research Center, Korea Electrotechnology Research Institute) ;
  • Hye-Lim Yu (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Min-Soo Kim (Energy Conversion Research Center, Korea Electrotechnology Research Institute) ;
  • Woo-Jin Choi (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Soon-Jong Jeong (Energy Conversion Research Center, Korea Electrotechnology Research Institute) ;
  • Jae-Ho Jeon (Department of Functional Powder Materials, Korea Institute of Materials Science) ;
  • Wook Jo (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2023.05.30
  • Accepted : 2023.06.12
  • Published : 2023.07.01

Abstract

Multilayered actuators using Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3 (PMN-PIN-PT) crystals have demonstrated excellent properties, but are costly and lack mechanical strength. Textured PMN-PIN-PT ceramics exhibit robust mechanical strength and comparable properties to their single crystals form. However, the development of multilayered actuators using textured PMN-PIN-PT ceramics has not been achieved until now. This study presents the development of a multilayered actuator using textured 0.37PMN-0.29PIN-0.34PT ceramics with an Ag0.9/Pd0.1 inner electrode, co-fired at 950℃. A random 0.37PMN-0.29PIN-0.34PT ceramics multilayered actuator was also developed for comparison. The multilayered actuator consisted of 9 ceramic layers (36 ㎛ thickness) with an overall actuator thickness of 0.401 mm. The textured and random 0.37PMN-0.29PIN-0.34PT ceramics-based multilayered actuators achieved displacements of 0.61 ㎛ (0.15% strain) and 0.23 ㎛ (0.057% strain) at a low applied peak voltage of 100 V. These results suggest that the developed multilayered actuator using high-performance textured 0.37PMN-0.29PIN-0.34PT ceramics has the potential to replace expensive single crystal-based actuators cost-effectively.

Keywords

Acknowledgement

This research was supported by Korea Electrotechnology Research Institute (KERI) Primary research program through the National Research Council of Science & Technology (NST) funded by the Ministry of Science and ICT (MSIT) (No.23A01032) and UST Young Scientist Research Program 2021 (2021YS28) through the University of Science and Technology of the Republic of Korea.

References

  1. K. Uchino and S. Takahashi, Curr. Opin. Solid State Mater. Sci., 1, 698 (1996). [DOI: https://doi.org/10.1016/S1359-0286(96)80054-4]
  2. N. Setter, Ceramics Laboratory, EPFL SFIT (2002).
  3. E. Sun and W. Cao, Prog. Mater. Sci., 65, 124 (2014). [DOI:https://doi.org/10.1016/j.pmatsci.2014.03.006]
  4. Z. W. Yin, H. S. Luo, P. C. Wang, and G. S. Xu, Ferroelectrics, 229, 207 (1999). [DOI: https://doi.org/10.1080/00150199908224341]
  5. Y. Sun, D. Liu, Q. Li, J. Shim, W. He, H. Fang, and Q. Yan, ACS Appl. Mater. Interfaces, 10, 12847 (2018). [DOI: https://doi.org/10.1021/acsami.8b01360]
  6. H. Liu, P. Veber, J. Rodel, D. Rytz, P. B. Fabritchnyi, M. I. Afanasov, E. A. Patterson, T. Fromling, M. Maglione, and J. Koruza, Acta Mater., 148, 499 (2018). [DOI: https://doi.org/10.1016/j.actamat.2018.02.026]
  7. B. Narayan, J. S. Malhotra, R. Pandey, K. Yaddanapudi, P. Nukala, B. Dkhil, A. Senyshyn, and R. Ranjan, Nat. Mater., 17, 427 (2018). [DOI: https://doi.org/10.1038/s41563-018-0060-2]
  8. S. K. Ye, J.Y.H. Fuh, and L. Lu, Appl. Phys. Lett., 100, 252906 (2012). [DOI: https://doi.org/10.1063/1.4730378]
  9. G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehrig, K. B. Eitel, E. Suvaci, M. Seabaugh, and K. S. Oh, Crit. Rev. Solid State Mater. Sci., 29, 45 (2004). [DOI: https://doi.org/10.1080/10408430490490905]
  10. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, and X. Zhang, Adv. Mater., 30, 1705171 (2018). [DOI: https://doi.org/10.1002/adma.201705171]
  11. Y. Liu, Y. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S. Zhang, R. Wang, and W. Cao, ACS Appl. Mater. Interfaces, 9, 29863 (2017). [DOI:https://doi.org/10.1021/acsami.7b08160]
  12. S. Kwon, E. M. Sabolsky, G. L. Messing, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 88, 312 (2005). [DOI: https://doi.org/10.1111/j.1551-2916.2005.00057.x]
  13. E.R.M. Andreeta, H.F.L. dos Santos, M.R.B. Andreeta, M. H. Lente, D. Garcia, A. C. Hernandes, and J. A. Eiras, J. Eur. Ceram. Soc., 27, 2463 (2007). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.10.011]
  14. E. M. Sabolsky, A. R. James, S. Kwon, S. Trolier-McKinstry, and G. L. Messing, Appl. Phys. Lett., 78, 2551 (2001). [DOI: https://doi.org/10.1063/1.1367291]
  15. E. M. Sabolsky, S. Trolier-McKinstry, and G. L. Messing, J. Appl. Phys., 93, 4072 (2003). [DOI: https://doi.org/10.1063/1.1554488]
  16. Y. Chang, J. Wu, Y. Sun, S. Zhang, X. Wang, B. Yang, G. L. Messing, and W. Cao, Appl. Phys. Lett., 107, 082902 (2015). [DOI: https://doi.org/10.1063/1.4929688]
  17. P. Li, Y. Huan, W. Yang, F. Zhu, X. Li, X. Zhang, B. Shen, and J. Zhai, Acta Mater., 165, 486 (2019). [DOI: https://doi.org/10.1016/j.actamat.2018.12.024]
  18. T. T. Zate, M. Kim, and J. H. Jeon, Sens. Actuators, A, 335, 113373 (2022). [DOI: https://doi.org/10.1016/j.sna.2022.113373]
  19. H. L. Yu, N. R. Ko, W. J. Choi, T. T. Zate, and W. Jo, J. Sens. Sci. Technol., 32, 10 (2023). [DOI: https://doi.org/10.46670/jsst.2023.32.1.10]
  20. C. Ming, T. Yang, K. Luan, L. Chen, L. Wang, J. Zeng, Y. Li, W. Zhang, and L. Q. Chen, Acta Mater., 145, 62 (2018). [DOI: https://doi.org/10.1016/j.actamat.2017.11.043]
  21. S.Yang, M. Wang, L. Wang, J. Liu, J. Wu, J. Li, X. Gao, Y. Chang, Z. Xu, and F. Li, J. Am. Ceram. Soc., 105, 3322 (2022). [DOI: https://doi.org/10.1111/jace.18293]
  22. Y. Yan, L. D. Geng, L. F. Zhu, H. Leng, X. Li, H. Liu, D. Lin, K. Wang, Y. U. Wang, and S. Priya, Adv. Sci., 9, 2105715 (2022). [DOI: https://doi.org/10.1002/advs.202105715]
  23. Y. Hosono, Y. Yamashita, H. Sakamoto, and N. Ichinose, Jpn. J. Appl. Phys., 42, 535 (2003). [DOI: https://doi.org/10.1143/JJAP.42.535]
  24. Y. Huang, S. Zhang, P. Wang, Y. X. Xia, D. H. Lin, K. Yao, and L. C. Lim, Actuators, 7, 60 (2018). [DOI: https://doi.org/10.3390/act7030060]
  25. X. Gao, J. Liu, B. Xin, H. Jin, L. Luo, J. Guo, S. Dong, Z. Xu, and F. Li, Sens. Actuators, A, 331, 113052 (2021). [DOI: https://doi.org/10.1016/j.sna.2021.113052]
  26. T. Ozaki and K. Hamaguchi, J. Micromech. Microeng., 28, 025007 (2018). [DOI: https://doi.org/10.1088/1361-6439/aaa2c8]
  27. Y. Chang, J. Wu, Y. Sun, S. Zhang, X. Wang, B. Yang, G. L. Messing, and W. Cao, Appl. Phys. Lett., 107, 082902 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2016.06.175]
  28. Y. Chang, Y. Sun, J. Wu, X. Wang, S. Zhang, B. Yang, G. L. Messing, and W. Cao, J. Eur. Ceram. Soc., 36, 1973 (2016). [DOI: https://doi.org/10.1016/j.ceramint.2016.06.175]
  29. D. D. Wei, Q. B. Yuan, G. Q. Zhang, and H. Wang, J. Mater. Res., 30, 2144 (2015). [DOI: https://doi.org/10.1557/jmr.2015.189]
  30. A. Berksoy-Yavuz, E. Mensur-Alkoy, E. Gozutok, S. Dursun, H. Yilmaz, and S. Alkoy, J. Mater. Sci.: Mater. Electron., 30, 18548 (2019). [DOI: https://doi.org/10.1007/s10854-019-02208-w]
  31. T. T. Zate, Ph.D. Thesis, A Study on the Development of Textured Piezoelectric Ceramics for Applying to Multilayer Actuators, p. 60-86, University of Science and Technology, Daejeon (2022). [ URI:http://www.dcollection.net/handler/ust/200000631274]
  32. J. J. Choi, J. H. Lee, B. D. Hahn, W. H. Yoon, and D. S. Park, Mater. Res. Bull., 43, 483 (2008). [DOI: https://doi.org/10.1016/j.materresbull.2007.02.033]
  33. M. Kondo, M. Hida, K. Omote, O. Taniguchi, T. Mita, S. Umemiya, and K. Kurihara, Sens. Actuators, A, 109, 143 (2003). [DOI:https://doi.org/10.1016/s0924-4247(03)00357-1]
  34. L. Gao, H. Guo, S. Zhang, and C. A. Randall, Actuators, 5, 8 (2016). [DOI: https://doi.org/10.3390/act5010008]
  35. I. Karakaya and W. T. Thompson, Bull. Alloy Phase Diagrams, 9, 237 (1988). [DOI: https://doi.org/10.1007/bf02881271]
  36. S. F. Wang, J. P. Dougherty, W. Huebner, and J. G. Pepin, J. Am. Ceram. Soc., 77, 3051 (1994). [DOI: https://doi.org/10.1111/j.1151-2916.1994.tb04549.x]
  37. A. C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, J. Mater. Sci., 32, 3257 (1997). [DOI:https://doi.org/10.1023/a:1018675423174]
  38. N. J. Donnelly and C. A. Randall, J. Am. Ceram. Soc., 92, 405 (2009). [DOI: https://doi.org/10.1111/j.1551-2916.2008.02891.x]
  39. P. K. Panda and B. Sahoo, Adv. Mater. Sci. Technol., 3, 1 (2021). [DOI: https://doi.org/10.37155/2717-526X-0302-1]
  40. S. Yan, C. Sun, Q. Cui, M. He, Willhandy, R. Wang, J. Hao, and X. Chu, Mater. Chem. Phys., 255, 123605 (2020). [DOI: https://doi.org/10.1016/j.matchemphys.2020.123605]
  41. X. Hu, T. Cao, B. Wang, Z. Wen, K. Yan, and D. Wu, Ceram. Int., 49, 6119 (2023). [DOI: https://doi.org/10.1016/j.ceramint.2022.10.103]