• Title/Summary/Keyword: road user cost

Search Result 61, Processing Time 0.025 seconds

Multi-class Variable Demand Network Equilibrium (다계층 가변수요 교통망 균형)

  • Kim, Byung-Kwan;Lim, Yong-Taek;Lim, Kang-Won;Lee, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.155-167
    • /
    • 2008
  • This paper studies a multiple user class variable demand user equilibrium and system optimal condition, and then establishes solution algorithms for them. The traffic network equilibrium is accomplished with basis on following assumptions. For considering heterogeneous road user, several user classes have discrete set of VOTs and the travel demand of each user classes varies according to generalized travel cost. this paper specifically investigates following question on multi-class variable demand: Are user equilibrium flows pattern dependent on the unit (time or money) perceived by road user classes? What is system optimal condition according to the unit used in measuring the travel cost or disutility? Finally, using this network equilibrium condition, The traffic assignment algorithm of each equilibrium condition are established.

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.

Optimum Life-Cycle Cost Design of Steel Bridges (강교의 생애주기비용 최적설계)

  • Cho, Hyo-Nam;Lee, Kwang-Min;Kim, Jung-Ho;Choi, Young-Min;Bong, Youn-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.341-358
    • /
    • 2003
  • This paper proposed a general formulation of Life-Cycle Cost (LCC) models and LCC effective design system models of steel bridges suitable for practical implementation. An LCC model for the optimum design of steel bridges included initial cost and direct/indirect rehabilitation costs of a steel bridge as well as repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socioeconomic losses. The new road user cost model and regional socioeconomic losses model were especially considered because of the traffic network. Illustrative design examples of an actual steel box girder and an orthotropic steel deck bridge were discussed to demonstrate the LCC effectiveness of the design of steel bridges. Based on the results of the numerical investigation, the LCC-effective optimum design of steel bridges based on the proposed LCC model was found to lead to a more rational, economical, and safer design compared with the initial cost-optimum design and the conventional code-based design.

The Selection of Optimal Interchange Types by Quantifying the User Costs and Construction Costs of Ramps (연결로의 사용자 비용과 공사비 계량화를 통한 입체교차로 최적형식 선정 기법)

  • Kim, Sang-Youp;Choi, Jai-Sung;Min, Kyung-Chan;Choi, Hyun-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.33-41
    • /
    • 2010
  • It is stated in the highway geometric design guide that expressway interchange types should be selected considering a set of input variables including travel demand, topography, construction cost and interchange spacing. However, this selection method has a problem of providing different interchange types even for the same input variables depending upon different applications of engineers discretion. A procedure that produces consistent results is necessary and this paper presents the development of an efficient and reliable procedure based on the quantification of road user costs and construction costs on interchanges. To develop this procedure, a survey of existing expressway interchange types in South Korea was made and 10 basic interchange types and 52 supplementary interchange types were identified. To relate road user costs and construction costs to these interchange types, this research uses two method. First, interchange types were expressed by a set of ramp configurations. Second, road user benefits and construction costs associated with these different interchange types were formulated based on the current national guide of the expressway economical analysis. As a result, it was proved that an interchange type to provide minimum costs could be selected consistently and this research result should be useful for future expressway geometric designs.

A Study on the Development and Application of the Transport Accounts in Korea (한국의 교통계정 개발과 적용에 관한 연구 - 도로교통과 철도교통을 중심으로 -)

  • Kim, Han-Young;Lee, Won-Young
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.996-1010
    • /
    • 2009
  • This paper proposed the framework for the Korean transport accounts which is suitable to Korean situation and can be used for international comparison. The framework is composed of the costs, the revenues and the estimation methodology. This framework is applied to both the Korean road and rail transport, respectively. The result showed that the total cost compared to GDP for the road was higher than the Europe's by 3.23% and that for the rail was lower than the Europe's by 0.67%. Also, the result showed that, in terms of the unit cost, the passenger cost per person-kilometer of road transport was 4.8 times higher than that of rail transport and the freight cost per ton-kilometer of road transport was 2.4 times higher than that of rail transport.

Economic Feasibility of Common Utility Tunnel based on Cost-Benefit Analysis (비용편익 분석에 기초한 공동구의 경제적 타당성 평가)

  • Kang, Yeong Ku;Choi, Ik Chang
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.29-36
    • /
    • 2015
  • Common utility tunnel is essential to the daily lives of people underground utilities (electricity, gas and supply facilities such as water, communication facilities, sewer facilities, etc.) to improve the appearance by co-acceptance and disaster prevention, important for the conservation of the city's population was concentrated road construction the city-based facilities. There is recognition of the importance of the various supply treatment facilities in common utility tunnel as infrastructure to accommodate joint according to the city expanded, the demand for infrastructure. In this paper, a cost-benefit analysis using a one-time occurrence, without simply relying on cost or current cost, project manager for the city-dimensional feasibility study conducted, the user level of the maintenance costs and user costs, including social costs items from various angles can be investigated and proposed a mechanism of economic feasibility common utility tunnel. Evaluation of the proposed technique is cost-benefit and cost caused by installing common utility tunnel the existing pipeline area - was investigated by the benefit analysis, extended and repeated common utility tunnel installation depends much affected by the excavation, so users of reducing the number of repeat excavation convenience can be seen that this occurs.

Minimum Expected Life Cycle Cost Model for Optimal Seismic Design and Upgrading of Long Span PC Bridges (장대 PC교량의 최적 내진설계 및 성능개선을 위한 최소 기대 Life Cycle Cost 모델)

  • 조효남;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.305-312
    • /
    • 1999
  • This study is intended to propose a systematic and practical life cycle cost(LCC) model for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges. The LCC models consist of five cost functions such as initial cost, repair/replacement cost, human losses, road user cost, and indirect losses of regional economy. The proposed model Is successfully expressed in temrs of Park-Ang damage indices and life cycle damage probability obtained from SMART-DRAIN-2DX which is an existing algorithm for nonlinear time history analysis. The proposed LCC model is successfully applied to a viaduct constructed by PSM, in Seoul. Based on the observations, the proposed systematic procedure for the formulation of LCC model may be useful for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges.

  • PDF

Implementing an Application Tool of Life Cycle Cost Analysis (LCCA) for Highway Maintenance and Rehabilitation in California, USA

  • Kim, Changmo;Lee, Eul-Bum
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.376-380
    • /
    • 2015
  • Life-Cycle Cost Analysis (LCCA) for highway projects is known as an effective analytical technique that uses economic principles to evaluate long-term alternative investment options, especially for comparing the values of alternative pavement design structures and construction strategies. In the Unites States, the 2012 Moving Ahead for Progress in the 21st Century Act (MAP-21) amended the United States Code to mandate that the United States Government Accountability Office (GOA) conducts a study of the best practices for calculating life-cycle costs and benefits for the federally funded highway projects in 2013. The RealCost 2.5CA program was developed and adapted as an official LCCA tool to comply with regulatory requirements for California state highway projects in 2013. Utilization of this California-customized LCCA software helps Caltrans to achieve substantial economic benefits (agency cost and road user cost savings) for highway projects. Proper implementation of LCCA for roadway construction and rehabilitation would deliver noticeable savings of agency's roadway maintenance cost especially in developing counties where financial difficulties exist.

  • PDF

Optimal Seismic Reliability of Bridges Based on Minimum Expected Life Cycle Costs (최소기대비용에 기초한 교량의 최적내진신뢰성)

  • 조효남;임종권;심성택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.249-256
    • /
    • 1999
  • This study is intended to propose a systematic procedure for the development of the reliability-based seismic safety and cost-effective Performance criteria for design and upgrading of long span PC bridges. In the paper, a set of cost function models for life cycle cost analysis of bridges is proposed. The total life cycle cost functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses. The damage costs are successfully expressed in terms of Park-Ang median global damage indices and damage probabilities. The proposed approach is successfully applied to model bridges in both regions of a moderate seismicity area like Seoul, Korea and a high one like Tokyo, Japan. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as long span PC bridges.

  • PDF

Estimation of Road-Network Performance and Resilience According to the Strength of a Disaster (재난 강도에 따른 도로 네트워크의 성능 및 회복력 산정 방안)

  • Jung, Hoyong;Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • PURPOSES : This study examines the performance changes of road networks according to the strength of a disaster, and proposes a method for estimating the quantitative resilience according to the road-network performance changes and damage scale. This study also selected high-influence road sections, according to disasters targeting the road network, and aimed to analyze their hazard resilience from the network aspect through a scenario analysis of the damage recovery after a disaster occurred. METHODS : The analysis was conducted targeting Sejong City in South Korea. The disaster situation was set up using the TransCAD and VISSIM traffic-simulation software. First, the study analyzed how road-network damage changed the user's travel pattern and travel time, and how it affected the complete network. Secondly, the functional aspects of the road networks were analyzed using quantitative resilience. Finally, based on the road-network performance change and resilience, priority-management road sections were selected. RESULTS : According to the analysis results, when a road section has relatively low connectivity and low traffic, its effect on the complete network is insignificant. Moreover, certain road sections with relatively high importance can suffer a performance loss from major damage, for e.g., sections where bridges, tunnels, or underground roads are located, roads where no bypasses exist or they exist far from the concerned road, including entrances and exits to suburban areas. Relatively important roads have the potential to significantly degrade the network performance when a disaster occurs. Because of the high risk of delays or isolation, they may lead to secondary damage. Thus, it is necessary to manage the roads to maintain their performance. CONCLUSIONS : As a baseline study to establish measures for traffic prevention, this study considered the performance of a road network, selected high-influence road sections within the road network, and analyzed the quantitative resilience of the road network according to scenarios. The road users' passage-pattern changes were analyzed through simulation analysis using the User Equilibrium model. Based on the analysis results, the resilience in each scenario was examined and compared. Sections where a road's performance loss had a significant influence on the network were targeted. The study results were judged to become basic research data for establishing response plans to restore the original functions and performance of the destroyed and damage road networks, and for selecting maintenance priorities.