• 제목/요약/키워드: rings with left identity

검색결과 13건 처리시간 0.025초

ON (α,β)-SKEW-COMMUTING AND (α,β)-SKEW-CENTRALIZING MAPS IN RINGS WITH LEFT IDENTITY

  • JUNG, YONG-SOO;CHANG, ICK-SOON
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.23-34
    • /
    • 2005
  • Let R be a ring with left identity. Let G : $R{\times}R{\to}R$ be a symmetric biadditive mapping and g the trace of G. Let ${\alpha}\;:\;R{\to}R$ be an endomorphism and ${\beta}\;:\;R{\to}R$ an epimorphism. In this paper we show the following: (i) Let R be 2-torsion-free. If g is (${\alpha},{\beta}$)-skew-commuting on R, then we have G = 0. (ii) If g is (${\beta},{\beta}$)-skew-centralizing on R, then g is (${\beta},{\beta}$)-commuting on R. (iii) Let $n{\ge}2$. Let R be (n+1)!-torsion-free. If g is n-(${\alpha},{\beta}$)-skew-commuting on R, then we have G = 0. (iv) Let R be 6-torsion-free. If g is 2-(${\alpha},{\beta}$)-commuting on R, then g is (${\alpha},{\beta}$)-commuting on R.

Commuting involutions in a left artinian ring

  • Han, Juncheol
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.221-226
    • /
    • 1992
  • The involutions in a left Artinian ring A with identity are investigated. Those left Artinian rings A for which 2 is a unit in A and the set of involutions in A forms a finite abelian group are characterized by the number of involutions in A.

  • PDF

SYMMETRIC PROPERTY OF RINGS WITH RESPECT TO THE JACOBSON RADICAL

  • Calci, Tugce Pekacar;Halicioglu, Sait;Harmanci, Abdullah
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.43-54
    • /
    • 2019
  • Let R be a ring with identity and J(R) denote the Jacobson radical of R, i.e., the intersection of all maximal left ideals of R. A ring R is called J-symmetric if for any $a,b,c{\in}R$, abc = 0 implies $bac{\in}J(R)$. We prove that some results of symmetric rings can be extended to the J-symmetric rings for this general setting. We give many characterizations of such rings. We show that the class of J-symmetric rings lies strictly between the class of symmetric rings and the class of directly finite rings.

RINGS WITH A FINITE NUMBER OF ORBITS UNDER THE REGULAR ACTION

  • Han, Juncheol;Park, Sangwon
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.655-663
    • /
    • 2014
  • Let R be a ring with identity, X(R) the set of all nonzero, non-units of R and G(R) the group of all units of R. We show that for a matrix ring $M_n(D)$, $n{\geq}2$, if a, b are singular matrices of the same rank, then ${\mid}o_{\ell}(a){\mid}={\mid}o_{\ell}(b){\mid}$, where $o_{\ell}(a)$ and $o_{\ell}(b)$ are the orbits of a and b, respectively, under the left regular action. We also show that for a semisimple Artinian ring R such that $X(R){\neq}{\emptyset}$, $$R{{\sim_=}}{\oplus}^m_{i=1}M_n_i(D_i)$$, with $D_i$ infinite division rings of the same cardinalities or R is isomorphic to the ring of $2{\times}2$ matrices over a finite field if and only if ${\mid}o_{\ell}(x){\mid}={\mid}o_{\ell}(y){\mid}$ for all $x,y{\in}X(R)$.

ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.33-48
    • /
    • 2000
  • In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R$(M) of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meet-prime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

  • PDF

A NOTE OF PI-RINGS WITH RESTRICTED DESCENDING

  • Hong, Chan-Yong
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 1994
  • In this paper, some properties for a PI-ring satisfying the descending chain condition on essential left ideals are studied: Let R be a ring with a polynomial identity satisfying the descending chain condition on essential ideals. Then all minimal prime ideals in R are maximal ideals. Moreover, if R has only finitely many minimal prime ideals, then R is left and right Artinian. Consequently, if every primeideal of R is finitely generated as a left ideal, then R is left and right Artinian. A finitely generated PI-algebra over a commutative Noetherian ring satisfying the descending chain condition on essential left ideals is a finite module over its center.(omitted)

  • PDF

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • 대한수학회논문집
    • /
    • 제22권1호
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

OPENLY SEMIPRIMITIVE PROJECTIVE MODULE

  • Bae, Soon-Sook
    • 대한수학회논문집
    • /
    • 제19권4호
    • /
    • pp.619-637
    • /
    • 2004
  • In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.

ON ω-LOCAL MODULES AND Rad-SUPPLEMENTED MODULES

  • Buyukasik, Engin;Tribak, Rachid
    • 대한수학회지
    • /
    • 제51권5호
    • /
    • pp.971-985
    • /
    • 2014
  • All modules considered in this note are over associative commutative rings with an identity element. We show that a ${\omega}$-local module M is Rad-supplemented if and only if M/P(M) is a local module, where P(M) is the sum of all radical submodules of M. We prove that ${\omega}$-local nonsmall submodules of a cyclic Rad-supplemented module are again Rad-supplemented. It is shown that commutative Noetherian rings over which every w-local Rad-supplemented module is supplemented are Artinian. We also prove that if a finitely generated Rad-supplemented module is cyclic or multiplication, then it is amply Rad-supplemented. We conclude the paper with a characterization of finitely generated amply Rad-supplemented left modules over any ring (not necessarily commutative).