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A GENERALIZATION OF THE JACOBSON RADICAL

A. R. NAGHIPOUR AND A. H. YAMINI

ABSTRACT. Let R be an associative ring with identity and J(R)
be the Jacobson radical of R. In this paper we investigate the
generalization of the Jacobson radical of R, J*(R) say. Also we
study the rings that J*(R) = J(R).

0. Introduction

Throughout, R stands for an associative ring with identity, J(R) for
the Jacobson radical of R, N(R) for the non-left-invertible elements of
R and U(R) for the left-invertible elements of R. Recall that R is said
to have stable range one if for any a, b € R satisfying Ra + Rb = R,
there exists ¥y € R such that a + yb is a unit. This definition is left-right
symmetric by Vaserstein [14, Theorem 2]. R is (strongly) w-regular
if for every element ¢ € R there exists a positive integer n = n(a),
depending on a, such that (a” € a®*'R) a™ € a"Ra™ (see for example
(1], [2] and [13]), and R is a semilocal if R/J(R) is a left artinian ring.
We say that R is J-semisimple if its Jacobson radical is zero. R is
said to be decomposable if it contains a central idempotent # 0,1, and
indecomposable otherwise. The collection of all n X n matrices over a
ring R will be denoted by M,,(R) and the rings of row finite and column
finite matrices over R by CFMy(R) and RF M, (R), respectively, where
n is allowed to be any finite or infinite cardinal number. A detailed
exposition about infinite matrices and their Jacobson radicals is given
in [8] and [9]. A ring R is called J*-ring if for every z € R, either
x € J(R) or x = a + b such that a is left-invertible and b is non-left-
invertible.
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The Jacobson radical that introduced by N. Jacobson [5] has been an
important tool in several branches of mathematics. See for example (3],
[10] and [15]. Now let J*(R) = {z € N(R): z+ N(R) C N(R)}. It is
shown that J*(R) and J(R) have similar properties and as application
of this the following are equivalent:

1) R is a J*-ring,

2) J*(R) = J(R),

) J*(R) is a left ideal,

) R=R/J(R) is a J*-ring,

) trivial extension S(R, M) of M by R is a J*-ring,

) every upper (lower) triangular matrix ring UTM,(R)
(LTM,(R)) is a J*-ring, where n is allowed to be any
finite or countably infinite cardinal number.

Finally we show that J*(R) = J(R) for the following classes of rings:
(1) semilocal rings, (2) stable range one rings, (3) rings which are gener-
ated by their units (see for example, [4] and [11]), (4) left artinian rings,
(5) CFM,(R), where R is a J*-ring, J(CFM,,(R)) = CFM,(J(R)) and
n is any finite or countably infinite cardinal number. Similarly, under
the same conditions, RFM,(R) is also a J*-ring, (7) every ring whose
indecomposable J-semisimple factor rings are J*-ring.

1. Basic properties of J*(R)

In this section we study some basic properties of J*(R) which is
defined by

J*(R) = {z € N(R) : ¢ + N(R) C N(R)}.

The results of this section will be used in the next section. First we
show that J*(R) is an associative ring.

THEOREM 1.1. J*(R) is an associative ring.
Proof. Let z,y € J*(R). Then
z+y+N(R)Cz+ N(R)C N(R)
and
—z+ N(R) = —(z + N(R)) C N(R),

so J*(R) is closed under addition. Now suppose that zy ¢ J*(R). There-
fore, there exists z € N(R) such that zy + z is left-invertible, so there
exists a € R such that a(xy + z) = 1. Thus 1 — azy is not left-invertible.
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On the other hand, aN(R) = N(R). Therefore, ax + N(R) € N(R),
hence

ax € J*(R).

So 1 — ax is left-invertible. Hence (1 —az)(1+y) =14y —ax —axy is
left-invertible. Since J*(R) is a subgroup of R, y — az € J*(R). Thus
y—ax + N(R) C N(R) and hence y — ax + 1 — axy € N(R), which is a
contradiction. O

THEOREM 1.2. Let R = R/J(R). Then J*(R) = J*(R).

Proof. Let T € J*(R). Then Z + N(R) C N(R). Therefore,

z+ N(R) C N(R)

and by [6, Proposition (4.8)] we have x + N(R) C N(R). Thus 7 €
J*(R). Now let T € J*(R). Then z+ N(R) C N(R), hence T+ N(R) C
N(R), whence T + N(R) C N(R). Therefore,

T € J*(R).

THEOREM 1.3. For any direct product [[;c; R; of rings we have

T ([ R =7 (R

el i€l

Proof. A routine argument shows that [[,c; J*(R:) € J*([[;c; Ri)-
Now let z € J*(I];c; Ri), i € I and y € N(R;). Define z € J*(J[;c; Ri)
such that m;(2) = y and m;(2) = 1 — mj(z) for all j # 4, where 7 :
I1;cr Ri — Ry is the canonical projection. We have x+2 € J*([[;c; Ri),
so mi(z) +y € N(R;), whence m;(z) € J*(R;). O

THEOREM 1.4. Let n be any finite or countably infinite cardinal
number. Then the following hold:

(1) J*(CFMy,(R)) C CFMu{(J*(R));

(2) J*(RFM,(R)) C RFM,(J*(R)).

Proof. Since the proofs of (1) and (2) are similar, we provide only
the proof (1). Let A € J*(CFM,(R)). First we show that ax; € J*(R)
for all k. If ap, ¢ J*(R) for some k, then there exists y € N(R) such
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that ay, +y ¢ N(R). Suppose v(akx +y) = 1. Define

k
—ai1+1 —ai,2 e —a1,k-1 0 —a1,k+1
—az,1 —azz2+1 - —a2,k—1 0 —Q2,k+1
B = —Qg—11  —Qk-12 -+ —@k—1k—1+1 0 —Qk—_1,k+1
k —ak,1 —ak,2 —ak k-1 Y —Qk k41
—Gk+1,1 —Qk+12 - —Qk41,k—1 0 —agrip+1+1

It is easy to show that B € N(CFM,(R)) and

k
1 0 0 al,k 0
01 0 as k 0
A+B= 0 0 1 ag1x O
k|0 O 0 arrty O
0 0 0 agrie 1
Since C(A + B) = I, where
k
10 -+ 0 =—apv O
01 -+ 0 =—agpv O
C = 0O 0 --- 1 —Qp—1 kY o - y
klo o --- 0 v 0 ..
0 0 -+ 0 —apqpv 1

and [ is the identity matrix, A + B is left-invertible which is a con-
tradiction. Therefore, arx € J*(R). Now let [ < k and assume that
ag; ¢ J*(R). Therefore, there exist v € R and y € N(R) such that
v(ag; +y) = 1. Define

o0
B =I-E;—Ew+Eg+yEu— A+ Zai,lEily
=1
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where E;;’s denote the matrix units. It is easy to show that B’ €
N(CFM,(R)) and

{ k

10 - 0 ay 0 - 000

01 - 0 ay 0 -+ 000

00 -~ 1 a1y O 000

1o o0 - 0 ay O 01 0
A-l—BI: 0 0 0 ar41,l 1 0 0 O
00 -+ 0 ary O 100

k{o 0 -+ 0 ag+y 0 --- 0 0 O

0 0 --- 0 Ak41,1 o --- 0 0 1

Since C'(A+ B’) = I, where

l k
10 . 000 -+ 0 =ayuv O
o1 . 00©O0 -+ 0 =—agw 0
o0 .- 100 -+ 0 —a_1yv O
{100 -~ 0 0CO0 --- 0 v 0
O = 00 .- 001 -+ 0 =—ayv O ,
00 .- 000 -+ 1 —ag-1yv O
klo o0 --- 01 0 --- 0 —agv 0
00 - 000 -+ 0 —agsv 1

A+ B’ is left-invertible which is a contradiction. Therefore, ar; € J*(R).
The proof of the case k < [ is similar. O

The following example shows that the inclusions in the Theorem 1.4
may be strict.

EXAMPLE 1.5 (see [16]). Let (D, m) be a commutative local domain
that is not a field. Then J(D) = m # 0. It is easy to see that J(D[z]) = 0
and

N(D[z]) = N(D) U{g € D[x]|deg(g) = 1}.
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Now we show that J*(D) C J*(Dlz]). Assume that a € J*(D) then
a € N(D) and hence a € N(D|[z]). Let f € N(Dlz]). Then we have two
cases:

(i)“f € N(D)”in this case we have a + f € N(D) and hence
a+ f € N(D[z)). .
(i1)“f € N(D[z]) with deg(f) > 1"Let f = > i ; a;z* and let
an # 0. Then deg(a+ f) > 1 and hence a+ f € N(D|z}).
Therefore a € J*(D|z]) and so J*(D) C J*(D[z]). Since 0 # J(D) C
J*(D) C J*(Dlz]) we have that J*(D[z]) # 0 (e.g., D[z] is not a J*-
ring). So, Ma(J*(D[z])) # 0. But, it is easy to show that J*(My(D|z]))
=0.

The next theorem shows that J(R) in Nakayama Lemma and Krull
Intersection Theorem can be replaced by J*(R). See [7, Theorems 2.2,
8.10] and [12, Propositions VIII.1.3, VIL.4.6].

THEOREM 1.6. Let I be an ideal of R. Then I C J*(R) if and only
if I C J(R).

Proof. Let z € I and r € R. Then rz € I C J*(R), and hence
1—rz ¢ N(R). Therefore, z € J(R). The converse is clear. a

2. J*-rings

In this section, it is shown that the set of J*-ring contains the classes
of some important rings. Let M be a unital (R, R)-bimodule. Recall
that the split-null (or trivial extension) S(R, M) of M by R is the ring
formed from the cartesian product R x M with componentwise addition
and multiplication given by (a,m)(b, k) = (ab, ak + mb).

THEOREM 2.1. The following are equivalent:
(1) R is a J*-ring,
2) J*(R) = J(R),
3) J*(R) is a left ideal,
4) R= R/J(R) is a J*-ring,
5) S(R, M) is a J*-ring, where M is a unital (R, R)-bimodule,
(6) every upper (lower) triangular matrix ring UT M, (R) (LT M,(R))
is a J*-ring, where n is allowed to be any finite or countably infinite
cardinal number.

Proof. (1)==(2): Let x € J*(R)\ J(R). Then z = a+b for some left-
invertible element a¢ and non-left-invertible element b. Hence x — b = a,
which contradicts the definition of J*(R). Therefore, J*(R) = J(R).

o~~~
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(2)=-(3): Trivial.

(3)=(2): Tt is enough to show that J*(R) C J(R). Suppose to
the contrary that there exists an z € J*(R) \ J(R). Then there exists
t € R such that 1+ ¢z is not left-invertible. Since —tx € J*(R), we have
1 € N(R), which is a contradiction. Therefore, J*(R) C J(R).

(2)==(1): Let z ¢ J(R) = J*(R). Then there exists b € N(R) such
that x + b ¢ N(R). Therefore, x = —b + a, for some left-invertible
element a € R.

(4)<=>(2): The assertion follows from Theorem 1.2.

(5)<=>(2): The assertion follows immediately from J(S(R,M)) =
J(R) x M and J*(S(R,M)) = J*(R) x M.

(6)<=>(2): We only prove the upper triangular countably infinite
case; the proof of other cases are similar. Let S = UTM,(R). It is easy
to see that:

N(R)

N(R) R R
0 R
0 0 N(R)

N(S) =

Also, one can cheek that:

J*(R) R R
X 0 J*(R) R
J*(8) = 0 0 J*R) :
and

JR) R R
0 JR) R

J(5) = 0 0 J(R)

The result follows. O

THEOREM 2.2. We have the following:

(1) If {Ri}ser is a family of J*-rings, then [];c; R is a J*-ring if and
only if each R; is a J*-ring.

(2) If R is a ring in which every element is a sum of right-invertible
elements, then R is a J*-ring.

(3) M, (R) is a J*-ring for any ring R, where n > 1 is finite.
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(4) If R satisfies DCC on principal left ideals (right ideals), then R
is a J*-ring. In particular, left artinian rings are J*-rings.

(5) If R has stable range one, then R is a J*-ring. In particular,
strongly m-regular and semilocal rings are J*-rings.

Proof. (1): The assertion follows from Theorem 1.3.

(2): By Theorem 2.1, it is enough to show that J*(R) is a left ideal.
Let x € J*(R) and r € R. We have 7 = u; + u2 + -+ + up, where
each w; is right-invertible (and n > 1 is finite). It is easy to show
that, u;N(R) = N(R) for each i. Therefore, u;z + N(R) C N(R), so
wxz € J*(R) and hence rz = w1z + - - - + upz € J*(R).

(3): By [11, Lemma 5], for any ring R, every element of My(R)
(n > 1 is finite) can be written as a sum of an even number of units. So
the assertion follows from (2).

(4): Since any descending chain of principal left ideals in R/J(R) can
be written in the form

R/J(R)Z1 2 R/J(R)&2@1 2 R/J(R)Z3029%1 2 -+ -,

the DCC on principal left ideals of R implies the same for R/J(R).
Since R/J(R) is J-semisimple, R/J(R) is a finite direct product of J*-
rings by [6, Theorem (3.5), (4.14)] and (3). Therefore, R/J(R) is a
J*-ring by (1). So Theorem 2.1 shows that R is a J*-ring. (5): Let
z € J*(R)\ J(R). Then there exists a € R such that 1 — az is not left-
invertible. Since Raz + R(1 — az) = R, we have Rz + R(1 — ax) = R.
Therefore, there exists e € R such that z + e(1 — az) is invertible, which
is a contradiction. So R is a J*-ring. Every strongly m-regular ring
is stable range one by [1]. So, every strongly m-regular is a J*-ring.
Theorem 2.1 and (4) provide that a semilocal ring is a J*-ring. a

Part (5) of the above theorem suggests a natural question: Is every
m-regular ring a J*-ring?

THEOREM 2.3. Let n be any finite or countably infinite cardinal
number, R be a J*-ring and J(CFM,(R)) = CFM,(J(R)). Then
CFM,(R) is a J*-ring. In particular, if Vp is a right vector space
of countably infinite dimension over the division ring D, then End(Vp)
is a J*-ring.

Proof. By Theorem 1.4, we have
J(CFMyp(R)) C J*(CFM,(R)) C CFM,(J*(R)) = CFM,(J(R)).
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Therefore J(CFMy,(R)) = J*(CFM,(R)). By Theorem 2.1, CFM,(R)
is a J*-ring. The final statement of the theorem follows from End(Vp) =
CFM,(D) and J(CFM,(D)) = 0. O

REMARK. The above theorem holds also for the ring RF M, (R).

In the Example 1.5, we have seen that if R is a J*-ring, then R[z] may
not be a J*-ring. On the other hand, the situation is much nicer for the
ring R|[[z]] of formal power series over a Dedekind finite ring R (ab =1
implies ba = 1). In fact, it is easy to show that if R is a Dedekind finite
ring, then R[[z]] is a J*-ring if and only if R is a J*-ring.

THEOREM 2.4. If every indecomposable J-semisimple factor ring of
R is a J*-ring, then R is a J*-ring.

Proof. Suppose R is not a J*-ring. Then there exists ¢ € R\ J(R)
such that ¢ U(R)+ N(R). Let C be the set of ideals I of R such that
z ¢ U(R/I)+ N(R/I). Then J(R) € C and C is inductive, so C has a
maximal element, @) say. Replacing R by R/Q we may assume that for
every proper factor ring R of R, & € U(R) + N(R). By our hypothesis
there are three possibilities: R is decomposable, J(R) # 0, or R is a
J*-ring. If R is decomposable, say R = S x T with = = (z1,z2), then
xz1 € U(S)+ N(S) and z9 € U(T) + N(T), so z € U(R) + N(R), a
contradiction. If J(R) # 0, then by [6, Proposition (4.8)] z € U(R) +
N(R), a contradiction. Therefore, R is a J*-ring. O
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