ON (α, β) -SKEW-COMMUTING AND (α, β) -SKEW-CENTRALIZING MAPS IN RINGS WITH LEFT IDENTITY

YONG-SOO JUNG AND ICK-SOON CHANG

ABSTRACT. Let R be a ring with left identity. Let $G: R \times R \to R$ be a symmetric biadditive mapping and g the trace of G. Let $\alpha: R \to R$ be an endomorphism and $\beta: R \to R$ an epimorphism. In this paper we show the following: (i) Let R be 2-torsion-free. If g is (α,β) -skew-commuting on R, then we have G=0. (ii) If g is (β,β) -skew-centralizing on R, then g is (β,β) -commuting on R. (iii) Let $R \ge 2$. Let R be (n+1)!-torsion-free. If g is $n-(\alpha,\beta)$ -skew-commuting on R, then we have G=0. (iv) Let R be 6-torsion-free. If g is $2-(\alpha,\beta)$ -commuting on R, then g is (α,β) -commuting on R.

1. Preliminaries

Throughout, all rings R will be associative, and the center of a ring will be denoted by Z. Let α , β , θ , φ be additive mappings of R into R and let $x, y \in R$. As usual, the commutator yx - xy will be denoted by [y,x], and for convenience, the product yx + xy, $y\alpha(x) + \beta(x)y$, and $y\alpha(x) - \beta(x)y$ by $\langle y, x \rangle$, $\langle y, x \rangle_{(\alpha,\beta)}$ and $[y,x]_{(\alpha,\beta)}$, respectively. We will use extensively the following basic properties: for any $x, y, z \in R$, [xy,z] = x[y,z] + [x,z]y, $[x,y+z]_{(\alpha,\beta)} = [x,y]_{(\alpha,\beta)} + [x,z]_{(\alpha,\beta)}$, $\langle x,y+z \rangle_{(\alpha,\beta)} = \langle x,y \rangle_{(\alpha,\beta)} + \langle x,z \rangle_{(\alpha,\beta)}$, $[x+y,z]_{(\alpha,\beta)} = [x,z]_{(\alpha,\beta)} + [y,z]_{(\alpha,\beta)}$, $\langle x+y,z \rangle_{(\alpha,\beta)} = \langle x,z \rangle_{(\alpha,\beta)} + \langle y,z \rangle_{(\alpha,\beta)}$.

Let f be a mapping from R into R, and S a nonempty subset of R. Then f is called (α, β) -skew-commuting (resp. (α, β) -skew-centralizing) on S if $\langle f(x), x \rangle_{(\alpha, \beta)} = 0$ (resp. $\langle f(x), x \rangle_{(\alpha, \beta)} \in Z$) for all $x \in S$. Similarly f is said to be (α, β) -commuting on S if $[f(x), x]_{(\alpha, \beta)} = 0$ for

Received February 04, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 16U80, 16W20.

Key words and phrases: rings with left identity, (α, β) -skew-commuting mappings, (α, β) -skew-centralizing mappings, (α, β) -commuting mappings.

all $x \in S$. If we let $\alpha = \beta = 1$ (the identity map on R), then f is called simply skew-commuting, skew-centralizing and commuting on S, respectively.

As a simple example, let

$$R = \left\{ \begin{pmatrix} w & x \\ y & z \end{pmatrix} : w, x, y, z \in I \right\}$$

be a ring and

$$S = \left\{ \begin{pmatrix} w & x \\ 0 & 0 \end{pmatrix} : w, \ x \in I \right\} \subset R,$$

where I is the set of integers.

Let $\alpha, \beta: R \to R$ be mappings defined by

$$\alpha \left(\begin{array}{cc} w & x \\ y & z \end{array} \right) = \left(\begin{array}{cc} -w & 0 \\ 0 & 0 \end{array} \right) \ \ \text{and} \ \ \beta \left(\begin{array}{cc} w & x \\ y & z \end{array} \right) = \left(\begin{array}{cc} w & -x \\ 0 & 0 \end{array} \right).$$

Let us define the mapping $f: R \to R$ by

$$f\begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} w & 0 \\ 0 & 0 \end{pmatrix}.$$

Then f is (α, β) -skew-commuting on S but not skew-commuting on S.

A mapping $G: R \times R \to R$ is said to be symmetric if G(x,y) = G(y,x) for all $x,y \in R$. A mapping $g: R \to R$ defined by g(x) = G(x,x) for all $x \in R$, where $G: R \times R \to R$ is a symmetric mapping, is called the trace of G. It is obvious that, in case when $G: R \times R \to R$ is a symmetric mapping which is also biadditive (i.e., additive in both arguments), the trace g of G satisfies the relation g(x+y) = g(x) + g(y) + 2G(x,y) for all $x,y \in R$.

The study of (skew-)centralizing and (skew-)commuting mappings has been investigated by many authors (see, e.g., Brešar [3], Vukman [5] and references therein). In this connection, Bell and Lucier [1] obtained some results concerning skew-commuting, and skew-centralizing additive maps in which the condition of primeness is replaced by the existence of a left identity element.

We here investigate symmetric biadditive maps with the generalized skew-commuting and skew-centralizing traces, that is, (α, β) -skew-commuting and (α, β) -skew-centralizing ones, in rings with left identity.

2. Results

We begin with the following result.

THEOREM 1. Let R be a 2-torsion-free ring with left identity e. Let $\alpha: R \to R$ be an endomorphism and $\beta: R \to R$ an epimorphism. Let $G: R \times R \to R$ be a symmetric biadditive mapping and g the trace of G. If g is (α, β) -skew-commuting on R, then we have G = 0.

PROOF. We are given that

(1)
$$\langle g(x), x \rangle_{(\alpha, \beta)} = g(x)\alpha(x) + \beta(x)g(x) = 0$$
 for all $x \in R$.

First, observe that $\beta(e)$ is also a left identity of R since β is onto. From this and (1), it follows that

$$(2) \qquad \langle g(e), e \rangle_{(\alpha, \beta)} = g(e)\alpha(e) + g(e) = 0;$$

and right-multiplying by $\alpha(e)$ gives $2g(e)\alpha(e)=0=g(e)\alpha(e)$. Hence, by (2), we get g(e)=0.

Let us replace x by x + e in (1). We then have, for all $x \in R$,

(3)
$$\langle g(x), e \rangle_{(\alpha,\beta)} + 2 \langle G(x,e), x \rangle_{(\alpha,\beta)} + 2 \langle G(x,e), e \rangle_{(\alpha,\beta)} = 0.$$

Substituting -x for x in (3) and comparing (3) with the result, we obtain

(4)
$$\langle G(x,e),e\rangle_{(\alpha,\beta)} = G(x,e)\alpha(e) + G(x,e) = 0 \text{ for all } x \in \mathbb{R}$$

since g is an even function and R is 2-torsion free. Right multiplication of (4) by $\alpha(e)$ gives $2G(x,e)\alpha(e) = 0 = G(x,e)\alpha(e)$, and so, by (4), we have G(x,e) = 0 for all $x \in R$.

Therefore we arrive at

$$g(x+e) = g(x) + g(e) + 2G(x,e) = g(x)$$
 for all $x \in R$.

Since g is (α, β) -skew-commuting on R, the relation $g(x+e)\alpha(x+e) + \beta(x+e)g(x+e) = 0$ becomes $g(x)\alpha(x)+g(x)\alpha(e)+\beta(x)g(x)+\beta(e)g(x) = 0$, and thus we obtain

(5)
$$g(x)\alpha(e) + g(x) = 0 \text{ for all } x \in R.$$

Right-multiplying by $\alpha(e)$ in (5), we get $2g(x)\alpha(e) = 0 = g(x)\alpha(e)$, and hence the relation (5) implies g(x) = 0 for all $x \in R$ which gives the conclusion.

The next result is to improve the Bell and Lucier's result [1, Theorem 2].

COROLLARY 2. Let R be a 2-torsion-free ring with left identity e. Let α , $\theta: R \to R$ be endomorphisms and β , $\varphi: R \to R$ epimorphisms. If f is an additive map on R such that the mapping $x \mapsto \langle f(x), x \rangle_{(\alpha,\beta)}$ is (θ, φ) -skew-commuting on R, then we have f = 0.

PROOF. Defining a mapping $G: R \times R \to R$ by

$$G(x,y) = \langle f(x), y \rangle_{(\alpha,\beta)} + \langle f(y), x \rangle_{(\alpha,\beta)}$$
 for all $x, y \in R$;

and a mapping $g: R \to R$ by g(x) = G(x,x) for all $x \in R$, it is obvious that G is symmetric and biadditive, and that g is the trace of G. The hypothesis that the mapping $x \mapsto \langle f(x), x \rangle_{(\alpha,\beta)}$ is (θ, φ) -skew-commuting on R is equivalent to the fact that g is (θ, φ) -skew-commuting on R, and so Theorem 1 tells us that g = 0, that is, f is (α, β) -skew-commuting on R, from which it follows that

(6)
$$f(e)\alpha(e) + \beta(e)f(e) = f(e)\alpha(e) + f(e) = 0;$$

and right-multiplying by $\alpha(e)$ gives $2f(e)\alpha(e) = 0 = f(e)\alpha(e)$. By (6), we get f(e) = 0 and so f(x+e) = f(x) for all $x \in R$. The condition that $f(x+e)\alpha(x+e) + \beta(x+e)f(x+e) = 0$ now makes $f(x)\alpha(x) + f(x)\alpha(e) + \beta(x)f(x) + f(x) = 0$, and it follows that

(7)
$$f(x)\alpha(e) + f(x) = 0 \text{ for all } x, y \in R.$$

Right-multiplying by $\alpha(e)$, we get $2f(x)\alpha(e) = 0 = f(x)\alpha(e)$, so by (7) we have f(x) = 0 for all $x \in R$.

We continue our investigation with the next result.

THEOREM 3. Let R be a 2-torsion-free ring with left identity e. Let $\beta: R \to R$ be an epimorphism. Let $G: R \times R \to R$ be a symmetric biadditive mapping and g the trace of G. If g is (β, β) -skew-centralizing on R, then g (β, β) -commuting on R.

PROOF. Suppose that

(8)
$$\langle g(x), x \rangle_{(\beta,\beta)} = g(x)\beta(x) + \beta(x)g(x) \in Z \text{ for all } x \in R.$$

Since $\beta(e)$ is a left identity of R by the ontoness of β , our assumption implies

(9)
$$g(e)\beta(e) + \beta(e)g(e) = g(e)\beta(e) + g(e) \in Z.$$

Commuting with $\beta(e)$ gives $g(e) = g(e)\beta(e)$; and by (9) $2g(e) \in Z$, hence $g(e) \in Z$.

Let us replace x by x + e in (8). Then we get, for all $x \in R$,

$$g(x)\beta(e) + 2\beta(x)g(e) + 2G(x,e)\beta(x)$$

$$(10) + 2G(x,e)\beta(e) + g(x) + 2\beta(x)G(x,e) + 2G(x,e) \in Z.$$

Substituting -x for x in (10) and comparing (10) with the result, we obtain

(11)
$$\beta(x)g(e) + G(x,e)\beta(e) + G(x,e) \in Z \text{ for all } x \in R$$

because g is even and R is 2-torsion free.

Since $g(e) \in \mathbb{Z}$ and $\beta(e)$ is a left identity of \mathbb{R} , commuting with $\beta(e)$ in (11) gives

(12)
$$[G(x,e),\beta(e)] = 0 \text{ for all } x \in R;$$

and thus, by (12), we have $G(x, e) = G(x, e)\beta(e)$ for all $x \in R$. Now (11) comes to

(13)
$$\beta(x)g(e) + 2G(x,e) \in Z \text{ for all } x \in R;$$

and commuting with $\beta(x)$ in (13) gives

(14)
$$2[G(x,e),\beta(x)] = 0 = [G(x,e),\beta(x)] \text{ for all } x \in R$$

which, by the ontoness of β , gives $G(x, e) \in Z$ for all $x \in R$.

In view of $G(x,e) = G(x,e)\beta(e)$ and $G(x,e) \in \mathbb{Z}$, the relation (10) can be rewritten in the form

(15)
$$g(x)\beta(e) + g(x) + 2\beta(x)g(e) + 4\beta(x)G(x,e) \in \mathbb{Z}$$
 for all $x \in \mathbb{R}$.

Commuting with $\beta(e)$ in (15) and then using the fact that $[y, \beta(e)]z = 0$ for all $y, z \in R$ yield

(16)
$$[g(x), \beta(e)]\beta(e) + [g(x), \beta(e)] = 0 \text{ for all } x \in R;$$

and right-multiplying by $\beta(e)$ gives

$$2[q(x), \beta(e)]\beta(e) = 0 = [q(x), \beta(e)]\beta(e)$$

and so it follows from (16) that $g(x) = g(x)\beta(e)$ for all $x \in R$. Consequently, we see that the relation (15) becomes

(17)
$$g(x) + \beta(x)g(e) + 2\beta(x)G(x,e) \in Z \text{ for all } x \in R.$$

since R is 2-torsion free.

Commuting with $\beta(x)$ in (17), we have, for all $x \in R$,

$$[g(x), \beta(x)] = 0$$
 for all $x \in R$

which completes the proof.

Let $\alpha, \beta: R \to R$ be endomorphisms. By analogy with the definition of n-commutativity introduced in [2] and [4], for $n \geq 2$ we define a mapping $f: R \to R$ to be n- (α, β) -skew-commuting (resp. n- (α, β) -skew-centralizing) on the subset S if $\langle f(x), x^n \rangle_{(\alpha, \beta)} = 0$ (resp. $\langle f(x), x^n \rangle_{(\alpha, \beta)} \in Z$) for all $x \in S$, and f is said to be n- (α, β) -commuting on S if $[f(x), x^n]_{(\alpha, \beta)} = 0$ for all $x \in S$. Of course, in case when $\alpha = \beta = 1$ (the identity map on R), f is simply called n-skew-commuting, n-skew-centralizing and n-commuting on S, respectively.

Here we extend the results on (α, β) -skew-commuting maps to n- (α, β) -skew-commuting ones.

THEOREM 4. Let $n \geq 2$. Let R be a (n+1)!-torsion-free ring with left identity e. Let $\alpha: R \to R$ be an endomorphism and $\beta: R \to R$ an epimorphism. Let $G: R \times R \to R$ be a symmetric biadditive mapping and g the trace of G. If g is n- (α, β) -skew-commuting on R, then we have G = 0.

Proof. Assume that

(18)
$$\langle g(x), x^n \rangle_{(\alpha,\beta)} = 0 \text{ for all } x \in R.$$

Note that g(e) = 0 by the same argument used in the proof of Theorem 1.

Let t be any positive integer. Replacing x by x + te in (18) and using $g(x + te) = g(x) + t^2g(e) + 2tG(x, e)$ for all $x \in R$, we obtain

$$tP_1(x,e) + t^2P_2(x,e) + \dots + t^{n+1}P_{n+1}(x,e) = 0$$
 for all $x \in R$,

where $P_k(x, e)$ is the sum of terms involving x and e such that $P_k(x, te) = t^k P_k(x, e), k = 1, 2, \dots, n + 1.$

Replacing t by $1, 2, \dots, n+1$ in turn, and expressing the resulting system of n+1 homogeneous equations with the variables $P_1(x, e), P_2(x, e), \dots, P_{n+1}(x, e)$, we see that the coefficient matrix of the system is a van der Monde matrix

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ 2 & 2^2 & \dots & 2^{n+1} \\ \dots & \dots & \dots & \dots \\ n+1 & (n+1)^2 & \dots & (n+1)^{n+1} \end{pmatrix}.$$

Since the determinant of the matrix is equal to a product of positive integers, each of which is less than n+1, and since R is (n+1)!-torsion free, it follows immediately that for each $k=1, 2, \cdots, n+1$,

$$P_k(x, e) = 0$$
 for all $x \in R$.

In particular, we have, for all $x \in R$,

(19)
$$P_{n+1}(x,e) = 2\langle G(x,e), e^n \rangle_{(\alpha,\beta)} = 0$$

and

$$P_{n}(x,e) = \langle g(x), e^{n} \rangle_{(\alpha,\beta)} + 2\langle G(x,e), xe^{n-1} \rangle_{(\alpha,\beta)}$$

$$(20) \qquad + 2\langle G(x,e), exe^{n-2} \rangle_{(\alpha,\beta)} + 2\langle G(x,e), e^{2}xe^{n-3} \rangle_{(\alpha,\beta)}$$

$$+ \dots + 2\langle G(x,e), e^{n-2}xe \rangle_{(\alpha,\beta)} + 2\langle G(x,e), e^{n-1}x \rangle_{(\alpha,\beta)} = 0.$$

By (19), we obtain that, for all $x \in R$,

(21)
$$2\{G(x,e)\alpha(e) + \beta(e)G(x,e)\} = 0 = G(x,e)\alpha(e) + G(x,e);$$

and right-multiplying by $\alpha(e)$ and using (21), we get G(x,e)=0 for all $x\in R$. Hence this forces (20) to

(22)
$$\langle g(x), e^n \rangle_{(\alpha, \beta)} = g(x)\alpha(e) + \beta(e)g(x) = g(x)\alpha(e) + g(x) = 0$$

for all $x \in R$. Multiplying by $\alpha(e)$ on the right and utilizing (22), we conclude that g(x) = 0 for all $x \in R$. This completes the proof.

COROLLARY 5. Let $n \geq 2$. Let R be a (n+1)!-torsion-free ring with left identity e. Let $\alpha: R \to R$ be an endomorphism and $\beta: R \to R$ an epimorphism such that α is (β,β) -commuting on R. If f is an additive map on R which is n- (α,β) -skew-centralizing on R, then f is (β,β) -commuting on R.

PROOF. Since $f(x)\alpha(x)^n + \beta(x)^n f(x) \in Z$ for all $x \in R$, we have

$$[f(x)\alpha(x)^n + \beta(x)^n f(x), \beta(x)] = 0$$
 for all $x \in R$;

whence $[f(x), \beta(x)]\alpha(x)^n + f(x)[\alpha(x)^n, \beta(x)] + \beta(x)^n[f(x), \beta(x)] = 0$ which reduces to

(23)
$$[f(x), \beta(x)]\alpha(x)^n + \beta(x)^n[f(x), \beta(x)] = 0 \text{ for all } x \in R$$

because α is (β, β) -commuting on R, i.e., $[\alpha(x), \beta(x)] = 0$ for all $x \in R$. We introduce the mapping $G: R \times R \to R$ defined by

$$G(x,y) = [f(x), \beta(y)] + [f(y), \beta(x)]$$
 for all $x, y \in R$,

and the mapping $g: R \to R$ by g(x) = G(x, x) for all $x \in R$, it is obvious that G is symmetric and biadditive, and that g is the trace of G.

Now the relation (23) is equivalent to the fact that g is n- (α, β) -skew-commuting, and so it follows from Theorem 4 that $g(x) = 2[f(x), \beta(x)] = 0$ for all $x \in R$. Since R is 2-torsion-free, we obtain the conclusion of the theorem.

We provide the following example supporting the notion of (α, β) -skew-commutativity.

EXAMPLE. Let

$$R = \left\{ \left(egin{array}{ccc} w & 0 & 0 \ x & w & 0 \ y & z & w \end{array}
ight) : w,\, x,\, y,\, z \in \mathbb{C}
ight\},$$

where $\mathbb C$ is the set of complex numbers. Then R is a noncommutative associative ring with left identity as the unit matrix under the usual matrix addition and multiplication. The mapping $\alpha: R \to R$ defined by

$$lpha \left(egin{matrix} w & 0 & 0 \ x & w & 0 \ y & z & w \end{array}
ight) = \left(egin{matrix} w & 0 & 0 \ x & w & 0 \ 0 & z & w \end{array}
ight)$$

is an endomorphism and the mapping $\beta: R \to R$ defined by

$$\beta \begin{pmatrix} w & 0 & 0 \\ x & w & 0 \\ y & z & w \end{pmatrix} = \begin{pmatrix} w & 0 & 0 \\ -x & w & 0 \\ y & -z & w \end{pmatrix}$$

is an epimorphism. We define a mapping $f: R \to R$ by

$$f\begin{pmatrix} w & 0 & 0 \\ x & w & 0 \\ y & z & w \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ y & 0 & 0 \end{pmatrix}.$$

It is obvious that f is additive.

Now, defining a mapping $G: R \times R \to R$ by

$$G(X,Y) = [f(X),Y] + [f(Y),X]$$
 for all $X, Y \in R$,

we can easily check that G is symmetric and biadditive, and that the map g on R defined by g(X) = G(X, X) is the n- (α, β) -skew-commuting trace of G $(n \ge 1)$. It is trivial to see that G = 0.

On the other hand, putting

$$Z = \left\{ \begin{pmatrix} w & 0 & 0 \\ 0 & w & 0 \\ y & 0 & w \end{pmatrix} : w, \, y \in \mathbb{C} \right\},$$

it is immediate to see that Z is the center of R. Defining a mapping $G: R \times R \to R$ by

$$G(X,Y) = \langle f(X), Y \rangle + \langle f(Y), X \rangle$$
 for all $X, Y \in R$,

G is also symmetric and biadditive, and the map g on R defined by g(X) = G(X, X) is the (β, β) -skew-centralizing trace of G. It is clear that g is (β, β) -commuting on R.

We now close our investigation with the following result.

THEOREM 6. Let R be a 6-torsion-free ring with left identity e. Let $\alpha: R \to R$ be an endomorphism and $\beta: R \to R$ an epimorphism. Let $G: R \times R \to R$ be a symmetric biadditive mapping and g the trace of G. If g is 2- (α, β) -commuting on R, then g is (α, β) -commuting on R.

PROOF. Let us define a mapping $h: R \to R$ by $h(x) = [g(x), x]_{(\alpha, \beta)}$ for all $x \in R$. Our assumption can now be written in the form

(24)
$$\langle h(x), x \rangle_{(\alpha, \beta)} = [g(x), x^2]_{(\alpha, \beta)} = 0 \text{ for all } x \in R.$$

Since $\beta(e)$ is also a left identity of R by the ontoness of β , it follows that

(25)
$$h(e)\alpha(e) + \beta(e)h(e) = h(e)\alpha(e) + h(e) = 0 \text{ for all } x \in R;$$

and right-multiplying by $\alpha(e)$ gives $2h(e)\alpha(e)=0=h(e)\alpha(e)$. Hence, by (25), we get $h(e)=[g(e),e]_{(\alpha,\beta)}=0$. Note that h is odd and for all $x\in R$,

(26)
$$h(x+e) = h(x) + [g(e), x]_{(\alpha,\beta)} + 2[G(x,e), e]_{(\alpha,\beta)} + [g(x), e]_{(\alpha,\beta)} + 2[G(x,e), x]_{(\alpha,\beta)}.$$

We claim that h(x + e) = h(x) for all $x \in R$. Replacing x by x + e in (24) and using (26), we have, for all $x \in R$,

(27)

$$0 = \langle h(x+e), x+e \rangle_{(\alpha,\beta)}$$

$$= h(x)\alpha(e) + [g(e), x]_{(\alpha,\beta)}\alpha(x) + [g(e), x]_{(\alpha,\beta)}\alpha(e)$$

$$+ 2[G(x,e), e]_{(\alpha,\beta)}\alpha(x) + 2[G(x,e), e]_{(\alpha,\beta)}\alpha(e) + [g(x), e]_{(\alpha,\beta)}\alpha(x)$$

$$+ [g(x), e]_{(\alpha,\beta)}\alpha(e) + 2[G(x,e), x]_{(\alpha,\beta)}\alpha(x) + 2[G(x,e), x]_{(\alpha,\beta)}\alpha(e)$$

$$+ h(x) + \beta(x)[g(e), x]_{(\alpha,\beta)} + [g(e), x]_{(\alpha,\beta)} + 2\beta(x)[G(x,e), e]_{(\alpha,\beta)}$$

$$+ 2[G(x,e), e]_{(\alpha,\beta)} + \beta(x)[g(x), e]_{(\alpha,\beta)} + [g(x), e]_{(\alpha,\beta)}$$

$$+ 2\beta(x)[G(x,e), x]_{(\alpha,\beta)} + 2[G(x,e), x]_{(\alpha,\beta)}.$$

Substituting -x for x in (27) and comparing (27) with the result, we get, for all $x \in R$,

(28)

$$[g(e), x]_{(\alpha,\beta)}\alpha(x) + 2[G(x,e), e]_{(\alpha,\beta)}\alpha(x) + [g(x), e]_{(\alpha,\beta)}\alpha(e) + 2[G(x,e), x]_{(\alpha,\beta)}\alpha(e) + \beta(x)[g(e), x]_{(\alpha,\beta)} + 2\beta(x)[G(x,e), e]_{(\alpha,\beta)} + [g(x), e]_{(\alpha,\beta)} + 2[G(x,e), x]_{(\alpha,\beta)} = 0;$$

and right multiplication of (28) by $\alpha(e)$ gives, for all $x \in R$,

(29)

$$0 = [g(e), x]_{(\alpha,\beta)}\alpha(x)\alpha(e) + 2[G(x,e), e]_{(\alpha,\beta)}\alpha(x)\alpha(e) + 2[g(x), e]_{(\alpha,\beta)}\alpha(e) + 4[G(x,e), x]_{(\alpha,\beta)}\alpha(e) + \beta(x)[g(e), x]_{(\alpha,\beta)}\alpha(e) + 2\beta(x)[G(x,e), e]_{(\alpha,\beta)}\alpha(e).$$

Let us put x + e instead of x in (29) and utilize (29). Then we obtain

$$6[g(e), x]_{(\alpha,\beta)}\alpha(e) + 12[G(x,e), e]_{(\alpha,\beta)}\alpha(e) = 0,$$

and so

(30)
$$[g(e), x]_{(\alpha,\beta)}\alpha(e) + 2[G(x,e), e]_{(\alpha,\beta)}\alpha(e) = 0$$
 for all $x \in R$; and this relation (30) yields, for all $x \in R$,

(31)
$$[g(e), x]_{(\alpha,\beta)}\alpha(x) + 2[G(x,e), e]_{(\alpha,\beta)}\alpha(x)$$

$$= [g(e), x]_{(\alpha,\beta)}\alpha(ex) + 2[G(x,e), e]_{(\alpha,\beta)}\alpha(ex)$$

$$= \{[g(e), x]_{(\alpha,\beta)}\alpha(e) + 2[G(x,e), e]_{(\alpha,\beta)}\alpha(e)\}\alpha(x) = 0.$$

Hence the relation (29) becomes

$$2[g(x),e]_{(\alpha,\beta)}\alpha(e) + 4[G(x,e),x]_{(\alpha,\beta)}\alpha(e) = 0,$$

which gives

$$(32) [g(x), e]_{(\alpha,\beta)}\alpha(e) + 2[G(x,e), x]_{(\alpha,\beta)}\alpha(e) = 0 for all x \in R.$$

According to (31) and (32), we therefore can be written (28) in the form

(33)
$$\beta(x)[g(e), x]_{(\alpha, \beta)} + 2\beta(x)[G(x, e), e]_{(\alpha, \beta)} + [g(x), e]_{(\alpha, \beta)} + 2[G(x, e), x]_{(\alpha, \beta)} = 0 \text{ for all } x \in R.$$

Finally, replacing x by x + e in (33) and applying (33) to the result, we obtain

$$3[g(e), x]_{(\alpha,\beta)} + 6[G(x,e), e]_{(\alpha,\beta)} = 0,$$

which implies that

(34)
$$[g(e), x]_{(\alpha,\beta)} + 2[G(x,e), e]_{(\alpha,\beta)} = 0 \text{ for all } x \in R;$$

and the relation (33) with (34) yields

(35)
$$[g(x), e]_{(\alpha, \beta)} + 2[G(x, e), x]_{(\alpha, \beta)} = 0 \text{ for all } x \in R.$$

By applying (34) and (35) to (26), we now obtain that h(x+e) = h(x) for all $x \in R$, as claimed.

Since $\langle h(x), x \rangle_{(\alpha,\beta)} = 0$ for all $x \in R$, the relation $h(x+e)\alpha(x+e) + \beta(x+e)h(x+e) = 0$ becomes $h(x)(\alpha(x)+\alpha(e)) + (\beta(x)+\beta(e))h(x) = 0$, and it follows that

(36)
$$h(x)\alpha(e) + h(x) = 0 \text{ for all } x \in R.$$

Right-multiplying by $\alpha(e)$ in (36), we get $2h(x)\alpha(e) = 0 = h(x)\alpha(e)$, and hence the relation (36) yields h(x) = 0 for all $x \in R$ which gives the conclusion.

ACKNOWLEDGEMENT. The authors would like to thank the referee for several helpful comments and suggestions which improved the paper.

References

- [1] H. E. Bell and J. Lucier, On additive maps and commutativity in rings, Results Math. 36 (1999), 1–8.
- [2] H. E. Bell and Q. Deng, On ring epimorphisms with centralizing conditions, Chinese J. Math. 23 (1995), 67–78.
- [3] M. Brešar, Commuting maps: a survey, Taiwanese J. Math., to appear.
- [4] Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings, Comm. Algebra 23 (1995), 3705–3713.
- [5] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47–52.

Yong-Soo Jung Department of Mathematics Chungnam National University Taejon 305-764, Korea E-mail: ysjung@math.cnu.ac.kr

Ick-Soon Chang
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
E-mail: ischang@math.cnu.ac.kr