• Title/Summary/Keyword: right f-derivation

Search Result 11, Processing Time 0.022 seconds

ON GENERALIZED RIGHT f-DERIVATIONS OF 𝚪-INCLINE ALGEBRAS

  • Kim, Kyung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.119-129
    • /
    • 2021
  • In this paper, we introduce the concept of a generalized right f-derivation associated with a derivation d and a function f in 𝚪-incline algebras and give some properties of 𝚪-incline algebras. Also, the concept of d-ideal is introduced in a 𝚪-incline algebra with respect to right f-derivations.

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Dhara, Basudeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.573-586
    • /
    • 2018
  • Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

Almost derivations on the banach algebra $C^n$[0,1]

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.359-366
    • /
    • 1996
  • A linear map T from a Banach algebra A into a Banach algebra B is almost multiplicative if $\left\$\mid$ T(fg) - T(f)T(g) \right\$\mid$ \leq \in\left\$\mid$ f \right\$\mid$\left\$\mid$ g \right\$\mid$(f,g \in A)$ for some small positive $\in$. B.E.Johnson [4,5] studied whether this implies that T is near a multiplicative map in the norm of operators from A into B. K. Jarosz [2,3] raised the conjecture : If T is an almost multiplicative functional on uniform algebra A, there is a linear and multiplicative functional F on A such that $\left\$\mid$ T - F \right\$\mid$ \leq \in', where \in' \to 0$ as $\in \to 0$. B. E. Johnson [4] gave an example of non-uniform commutative Banach algebra which does not have the property described in the above conjecture. He proved also that C(K) algebras and the disc algebra A(D) have this property [5]. We extend this property to a derivation on a Banach algebra.

  • PDF

A NOTE ON GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS

  • RAZA, MOHD ARIF;REHMAN, NADEEM UR;GOTMARE, A.R.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.73-81
    • /
    • 2021
  • Let R be a prime ring, Qr be the right Martindale quotient ring and C be the extended centroid of R. If �� be a nonzero generalized skew derivation of R and f(x1, x2, ⋯, xn) be a multilinear polynomial over C such that (��(f(x1, x2, ⋯, xn)) - f(x1, x2, ⋯, xn)) ∈ C for all x1, x2, ⋯, xn ∈ R, then either f(x1, x2, ⋯, xn) is central valued on R or R satisfies the standard identity s4(x1, x2, x3, x4).

NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS

  • Zhang, Wei;Xu, Xiaowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1127-1133
    • /
    • 2014
  • Let S be a nonempty subset of a ring R. A map $f:R{\rightarrow}R$ is called strong commutativity preserving on S if [f(x), f(y)] = [x, y] for all $x,y{\in}S$, where the symbol [x, y] denotes xy - yx. Bell and Daif proved that if a derivation D of a semiprime ring R is strong commutativity preserving on a nonzero right ideal ${\rho}$ of R, then ${\rho}{\subseteq}Z$, the center of R. Also they proved that if an endomorphism T of a semiprime ring R is strong commutativity preserving on a nonzero two-sided ideal I of R and not identity on the ideal $I{\cup}T^{-1}(I)$, then R contains a nonzero central ideal. This short note shows that the conclusions of Bell and Daif are also true without the additivity of the derivation D and the endomorphism T.

AN ALGEBRA WITH RIGHT IDENTITIES AND ITS ANTISYMMETRIZED ALGEBRA

  • Choi, Seul-Hee
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.273-281
    • /
    • 2008
  • We define the Lie-admissible algebra NW$({\mathbb{F}}[e^{A[s]},x_1,{\cdots},x_n])$ in this work. We show that the algebra and its antisymmetrized (i.e., Lie) algebra are simple. We also find all the derivations of the algebra NW$(F[e^{{\pm}x^r},x])$ and its antisymmetrized algebra W$(F[e^{{\pm}x^r},x])$ in the paper.

GENERALIZED SKEW DERIVATIONS AS JORDAN HOMOMORPHISMS ON MULTILINEAR POLYNOMIALS

  • De Filippis, Vincenzo
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Let $\mathcal{R}$ be a prime ring of characteristic different from 2, $\mathcal{Q}_r$ be its right Martindale quotient ring and $\mathcal{C}$ be its extended centroid. Suppose that $\mathcal{G}$ is a nonzero generalized skew derivation of $\mathcal{R}$, ${\alpha}$ is the associated automorphism of $\mathcal{G}$, f($x_1$, ${\cdots}$, $x_n$) is a non-central multilinear polynomial over $\mathcal{C}$ with n non-commuting variables and $$\mathcal{S}=\{f(r_1,{\cdots},r_n)\left|r_1,{\cdots},r_n{\in}\mathcal{R}\}$$. If $\mathcal{G}$ acts as a Jordan homomorphism on $\mathcal{S}$, then either $\mathcal{G}(x)=x$ for all $x{\in}\mathcal{R}$, or $\mathcal{G}={\alpha}$.

A ONE-SIDED VERSION OF POSNER'S SECOND THEOREM ON MULTILINEAR POLYNOMIALS

  • FILIPPIS VINCENZO DE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.679-690
    • /
    • 2005
  • Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, d a non-zero derivation of R, I a non-zero right ideal of R, f($x_1,{\cdots},\;x_n$) a multilinear polynomial in n non-commuting variables over K, a $\in$ R. Supppose that, for any $x_1,{\cdots},\;x_n\;\in\;I,\;a[d(f(x_1,{\cdots},\;x_n)),\;f(x_1,{\cdots},\;x_n)]$ = 0. If $[f(x_1,{\cdots},\;x_n),\;x_{n+1}]x_{n+2}$ is not an identity for I and $$S_4(I,\;I,\;I,\;I)\;I\;\neq\;0$$, then aI = ad(I) = 0.