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GENERALIZED SKEW DERIVATIONS AS JORDAN

HOMOMORPHISMS ON MULTILINEAR POLYNOMIALS

Vincenzo De Filippis

Abstract. Let R be a prime ring of characteristic different from 2,
Qr be its right Martindale quotient ring and C be its extended cen-
troid. Suppose that G is a nonzero generalized skew derivation of R,
α is the associated automorphism of G, f(x1, . . . , xn) is a non-central
multilinear polynomial over C with n non-commuting variables and S =
{f(r1, . . . , rn) | r1, . . . , rn ∈ R}. If G acts as a Jordan homomorphism on
S, then either G(x) = x for all x ∈ R, or G = α.

1. Introduction

In all that follows let R be a prime ring, Z(R) the center of R, Qr be the
right Martindale quotient ring of R and C = Z(Qr) be the center of Qr. C is
usually called the extended centroid of R and is a field when R is a prime ring.
It should be remarked that Qr is a centrally closed prime C-algebra. We refer
the reader to [6] for the definitions and the related properties of these objects.

We recall that an additive map d on R is called a derivation if d(xy) =
d(x)y + xd(y) for all x, y ∈ R. Starting from this definition we may introduce
another concept of an additive function which generalizes derivations: the addi-
tive map G of R is said to be a generalized derivation if G(xy) = G(x)y+xd(y)
for all x, y ∈ R, where d is a derivation of R (usually G is said to be a gener-
alized derivation associated with d). Obviously, any derivation of R and any
map of R with form f(x) = ax + xb for some a, b ∈ R, are both generalized
derivations. The latter are usually called inner generalized derivations. We
would like to point out that one of the leading roles in the development of the
theory of generalized derivations is played by the inner generalized derivations.

We say that an additive map F acts as a homomorphism on a subset T ⊆ R,
if F(xy) = F(x)F(y) for all x, y ∈ T ; F acts as an anti-homomorphism on T , if
F(xy) = F(y)F(x) for all x, y ∈ T ; finally F acts as a Jordan homomorphism
on T if F(x2) = F(x)2 for all x ∈ T . Obviously any additive map, which is
a homomorphism or an anti-homomorphism, is a Jordan homomorphism. On
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the other hand, in [20, p. 50] Herstein proves that in case R is a prime ring
of characteristic different from 2, any Jordan homomorphism on R is either a
homomorphism or an anti-homomorphism of R.

In [7, Theorem 3] Bell and Kappe prove that if d is a derivation of a prime
ring R which acts as a homomorphism or anti-homomorphism on a non-zero
right ideal of R, then d = 0 on R.

In [34] Wang and You extend this result to a Lie ideal L of a prime ring
R with characteristic different from 2. They prove that there is no non-zero
derivation acting as a homomorphism or anti-homomorphism on L, unless when
L ⊆ Z(R).

Recently, Rehman (in [31]) and Albaş and Argaç (in [1]) study the case
when the derivation d is replaced by a generalized derivation G associated to
a derivation d. In both papers it is proved that if 0 6= G acts as a homomor-
phism or anti-homomorphism on I, a non-zero ideal of the prime ring R, then
either d = 0 or R is commutative. In particular, if assume that G acts as a
homomorphism on I, then either R is commutative or G is the identity map
on R. On the other hand, if assume that G acts as an anti-homomorphism on
I, then R is commutative.

Following this line of investigation, in [17] we obtain the following result:
Let R be a prime ring, L a non-central Lie ideal of R and F a non-zero
generalized derivation of R. If F acts as a Jordan homomorphism on L, then
either F(x) = x for all x ∈ R, or char(R) = 2, R satisfies the standard identity
s4(x1, x2, x3, x4), L is commutative and u2 ∈ Z(R) for any u ∈ L.

Generalized derivations and generalized (α, β)-derivations as homomorph-
isms, anti-homomorphisms or Lie homomorphisms in prime rings, as well as
derivations as homomorphisms or anti-homomorphisms in σ-prime rings, have
also been discussed in [2, 3, 4, 5, 30, 32, 36].

Our work is then motived by the previous results. In the current presenta-
tion we will continue the study of additive maps which act as Jordan homo-
morphisms. We will now recall the definition of generalized skew derivations of
R. Let R be an associative ring and α be an automorphism of R. An additive
map d : R −→ R is called a skew derivation of R if

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R and α is called an associated automorphism of d. An additive
map G : R −→ R is said to be a generalized skew derivation of R if there exists
a skew derivation d of R with associated automorphism α such that

G(xy) = G(x)y + α(x)d(y)

for all x, y ∈ R, d is said to be an associated skew derivation of G and α is
called an associated automorphism of G. The definition of generalized skew
derivations is a unified notion of skew derivation and generalized derivation,
which are considered as classical additive maps of non-associative algebras,
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have been investigated by many researchers from various views, see [8, 9, 10],
[11], [25], [27].

More precisely speaking, we will prove:

Theorem 1. Let R be a prime ring of characteristic different from 2, Qr be its

right Martindale quotient ring and C be its extended centroid. Suppose that G is

a nonzero generalized skew derivation of R, α is the associated automorphism

of G, f(x1, . . . , xn) is a non-central multilinear polynomial over C with n non-

commuting variables and S = {f(r1, . . . , rn) | r1, . . . , rn ∈ R}. If G acts as a

Jordan homomorphism on S, then either G(x) = x for all x ∈ R, or G = α.

It is well known that automorphisms, derivations and skew derivations of R
can be extended both to Qr. Chang in [8] extends the definition of generalized
skew derivation to the right Martindale quotient ring Qr of R as follows: by
a (right) generalized skew derivation we mean an additive map G : Qr −→ Qr

such that G(xy) = G(x)y + α(x)d(y) for all x, y ∈ Qr, where d is a skew
derivation of R and α is an automorphism of R. Moreover, there exists G(1) =
a ∈ Qr such that G(x) = ax + d(x) for all x ∈ R. In other words, any
generalized skew derivation G of R can be extended to Qr. We will adopt the
following notation:

f(x1, . . . , xn) = x1x2 . . . xn +
∑

σ∈Sn,σ 6=id

ασxσ(1)xσ(2) · · ·xσ(n)

for some ασ ∈ C and

S = {f(r1, . . . , rn) | r1, . . . , rn ∈ R}.

We always suppose that G 6= 0, char(R) 6= 2 and f(x1, . . . , xn) is non-central
valued in R.

We start with the following easy result:

Lemma 1.1. Let R be a prime ring of characteristic different from 2, G a

nonzero generalized skew derivation of R, α the associated automorphism of

G. If G acts as a Jordan homomorphism on R, then either G(x) = x for all

x ∈ R, or G = α.

Proof. Since char(R) 6= 2, then it is known that G is either a homomorphism
or an anti-homomorphism of R. In light of this we divide the proof into two
cases:

Case 1. Assume firstly that G is a homomorphism of R, that is

(1.1) G(xy) = G(x)G(y), ∀x, y ∈ R.

On the other hand we know that G(xy) = G(x)y + α(x)d(y). Comparing this
last relation with (1.1) we obtain

(1.2) G(x)

(
y − G(y)

)
+ α(x)d(y) = 0, ∀x, y ∈ R.
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Recall that there exists a ∈ Qr such that G(x) = ax+d(x) for all x ∈ R. Hence
by (1.2) we get

G(x)

(
y − ay − d(y)

)
+ α(x)d(y) = 0, ∀x, y ∈ R

that is

(1.3)

(
α(x) − G(x)

)
d(y) + G(x)

(
y − ay

)
= 0, ∀x, y ∈ R.

Replacing y by yr in (1.3), for any r ∈ R, and using again the relation (1.3), it
follows (

α(x) − G(x)

)
α(y)d(r) = 0, ∀x, y, r ∈ R.

Therefore, by the primeness of R, one has that either G = α or d = 0. In this
last case, G(x) = ax is a generalized derivation of R. Hence, by using the result
contained in Proposition 1 of [17] and since G 6= 0, we conclude that G(x) = x,
for all x ∈ R.

Case 2. Let now G be an anti-homomorphism of R, that is

(1.4) G(xy) = G(y)G(x), ∀x, y ∈ R.

Moreover we may assume d 6= 0, otherwise we may conclude as above that
G(x) = x for all x ∈ R.

Comparing (1.4) with G(xy) = G(x)y + α(x)d(y), we get

(1.5) G(x)y + α(x)d(y) = G(y)G(x).

Replacing x with xy in (1.5) and using (1.4) it follows

(1.6) α(xy)d(y) = G(y)α(x)d(y), ∀x, y ∈ R.

Now replace x by rx in (1.6), for any r ∈ R, thus the following holds

(1.7) α(rxy)d(y) = G(y)α(rx)d(y), ∀x, y, r ∈ R

and by using (1.6) in (1.7) we also have

α(r)G(y)α(x)d(y) = G(y)α(r)α(x)d(y), ∀x, y, r ∈ R

that is [G(y), α(R)]α(R)d(y) = (0), for all y ∈ R. Since R is prime, it follows
that, for any y ∈ R, either d(y) = 0 or G(y) ∈ Z(R).

Assume there exists an element u ∈ R such that G(u) ∈ Z(R). Therefore,
for any x ∈ R, by our assumption, we have

(1.8) G(ux) = G(x)G(u) = G(u)G(x)

and replacing x by xr in (1.8)

G(ux)r + α(ux)d(r) = G(u)G(x)r + G(u)α(x)d(r)

that is

G(x)G(u)r + α(ux)d(r) = G(u)G(x)r + G(u)α(x)d(r)
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and since G(u) ∈ Z(R), one has

α(u)α(x)d(r) = G(u)α(x)d(r), ∀x, r ∈ R

which means (
G(u)− α(u)

)
α(R)d(R) = (0).

Since d 6= 0 and by the primeness of R, it follows that α(u) = G(u) ∈ Z(R),
which implies u ∈ Z(R).

The previous argument means that for any y ∈ R, either d(y) = 0 or y ∈
Z(R). In any case we have that [d(y), y] = 0 for all y ∈ R. In this case,
by [28, Theorem 2] and since d 6= 0, R must be commutative, so that G is a
homomorphism of R and by Case 1 we get G = α. �

2. The case of inner generalized skew derivations

In this section we will deal with the case when G is an inner generalized
skew derivation induced by the elements a, b ∈ R and α ∈ Aut(R), that is
G(x) = ax + α(x)b for all x ∈ R. In this sense, our aim is to prove the
following:

Proposition 2.1. Let R be a prime ring of characteristic different from 2
and f(x1, . . . , xn) be a non-central multilinear polynomial over C with n non-

commuting variables and S = {f(r1, . . . , rn) | r1, . . . , rn ∈ R}. Let a, b ∈ R and

α ∈ Aut(R) such that G(x) = ax + α(x)b for all x ∈ R. If G(x2) = G(x)2 for

all x ∈ S, then either G(x) = x for all x ∈ R, or G = α.

2.1. The matrix case

Let us first consider the case when R = Mm(K) is the algebra of m × m
matrices over a field K of characteristic different from 2. Note that the set
f(R) = {f(r1, . . . , rn) | r1, . . . , rn ∈ R} is invariant under the action of all
inner automorphisms of R. Let us write r = (r1, . . . , rn) ∈ R × R × · · · ×
R = Rn. Then for any inner automorphism ϕ of Mm(K), we get that r =
(ϕ(r1), . . . , ϕ(rn)) ∈ Rn and ϕ(f(r)) = f(r) ∈ f(R). As usual, we denote the
matrix unit having 1 in (i, j)-entry and zero elsewhere by eij .

Let us recall some results from [24] and [26]. Let T be a ring with 1 and let
eij ∈ Mm(T ) be the matrix unit having 1 in (i, j)-entry and zero elsewhere.
For a sequence u = (A1, . . . ,An) in Mm(T ), the value of u is defined to be the
product |u| = A1A2 · · ·An and u is nonvanishing if |u| 6= 0. For a permutation
σ of {1, 2, . . . , n}, we write uσ = (Aσ(1), . . . ,Aσ(n)). We call u simple if it is
of the form u = (a1ei1j1 , . . . , aneinjn), where ai ∈ T . A simple sequence u is
called even if for some σ, |uσ| = beii 6= 0, and odd if for some σ, |uσ| = beij 6= 0,
where i 6= j. We have:

Fact 2.2 ([24, Lemma]). Let T be a K-algebra with 1 and let R = Mm(T ),
m ≥ 2. Suppose that g(x1, . . . , xn) is a multilinear polynomial over K such



196 VINCENZO DE FILIPPIS

that g(u) = 0 for all odd simple sequences u. Then g(x1, . . . , xn) is centrally
valued on R.

Fact 2.3 ([26, Lemma 2]). Let T be a K-algebra with 1 and let R = Mm(T ),
m ≥ 2. Suppose that g(x1, . . . , xn) is a multilinear polynomial over K. Let
u = (A1, . . . ,An) be a simple sequence from R.

(a) If u is even, then g(u) is a diagonal matrix.
(b) If u is odd, then g(u) = aepq for some a ∈ T and p 6= q.

Fact 2.4. Since f(x1, . . . , xn) is not centrally valued on R, then by Fact 2.2
there exists an odd simple sequence r = (r1, . . . , rn) from R such that f(r) =
f(r1, . . . , rn) 6= 0. By Fact 2.3, f(r) = βepq, where 0 6= β ∈ C and p 6= q. Since
f(x1, . . . , xn) is a multilinear polynomial and C is a field, we may assume that
β = 1. Now, for distinct i, j, let σ ∈ Sn be such that σ(p) = i and σ(q) = j, and
let ψ be the automorphism of R defined by ψ(

∑
s,t ξstest) =

∑
s,t ξsteσ(s)σ(t).

Then f(ψ(r)) = f(ψ(r1), . . . , ψ(rn)) = ψ(f(r)) = βeij = eij .

We start with the following (Lemma 1.5 in [18]):

Lemma 2.5. Let H be an infinite field, m be a positive integer with m ≥ 2 and

Mm(H) be the algebra of m×m matrices over H. If A1, . . . ,Ak are not scalar

matrices in Mm(H), then there exists some invertible matrix B ∈ Mm(H) such
that each matrix BA1B−1, . . . ,BAkB−1 has all non-zero entries.

Lemma 2.6. Let H be an infinite field, m be a positive integer with m ≥ 2 and

R = Mm(H) be the algebra of m ×m matrices over H. If there exists a ∈ R
such that au2 = (au)2 for all u ∈ S, then either a = 0 or a = I, the identity

matrix in R.

Proof. If a ∈ Z(R) then (a − a2)u2 = 0 follows by our assumption. Since
(a−a2) ∈ Z(R), we have that either a−a2 = 0 or f(x1, . . . , xn)

2 is a polynomial
identity for R.

In the first case either a = 0 or a = I, the identity matrix in R. In the latter
one, by Main Theorem’ in [15] it follows that f(x1, . . . , xn) is a polynomial
identity for R, which is a contradiction.

Thus we may assume that a is not a scalar matrix and proceed to have a
contradiction. By Lemma 2.5, there exists some invertible matrix B ∈Mm(H)
such that BaB−1, has all nonzero entries. Denote by ϕ(x) = BxB−1 the inner
automorphism induced by B. Since f(R) is invariant under the action of all
inner automorphisms of R, then ϕ(a)u2 = (ϕ(a)u)2 for all u ∈ S. Let us write
ϕ(a) =

∑
hl ahlehl for 0 6= ahl ∈ H. Since eij ∈ S for all i 6= j, then, for any

i 6= j, we have 0 = (ϕ(a)eij)
2. In particular, the (j, i)-entry of ϕ(a) is zero,

which is a contradiction. �

Claim 2.7. We remark that, analogously one can prove that if u2a = (ua)2

for all u ∈ S, then either a = 0 or a = I.
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Lemma 2.8. Let H be an infinite field, m be a positive integer with m ≥ 2 and

R = Mm(H) be the algebra of m×m matrices over H. If there exist a, b ∈ R
such that au2+u2b = (au+ub)2 for all u ∈ S, then a, b ∈ Z(R) with a+ b = I,
the identity matrix in R.

Proof. If either a ∈ Z(R) or b ∈ Z(R), then the conclusion follows from
Lemma 2.6 and Claim 2.7. Thus we may assume that both a and b are not
scalar matrices and proceed to have a contradiction. By Lemma 2.5, there
exists some invertible matrix B ∈Mm(H) such that each matrix BaB−1,BbB−1

has all nonzero entries. Denote by ϕ(x) = BxB−1 the inner automorphism
induced by B. As above we notice that ϕ(a)u2 + u2ϕ(b) = (ϕ(a)u + uϕ(b))2,
for all u ∈ S. Moreover we write ϕ(a) =

∑
hl ahlehl and ϕ(b) =

∑
hl bhlehl for

0 6= ahl, 0 6= bhl ∈ H. Since eij ∈ f(R) for all i 6= j, then for any i 6= j

0 = (ϕ(a)eij + eijϕ(b))
2.

In particular, it follows simultaneously that the (j, i)-entry of a is zero and
(j, i)-entry of b is zero, which is a contradiction. �

Lemma 2.9. Let H be an infinite field, m be a positive integer with m ≥ 2
and R = Mm(H) be the algebra of m×m matrices over H. Assume there exist

0 6= a, b, q ∈ R such that q is an invertible matrix such that G(x) = ax+qxq−1b
for all x ∈ R. If q−1a ∈ Z(R) and G(x2) = G(x)2 for all x ∈ S, then either

G(x) = x for all x ∈ R or G(x) = qxq−1 for all x ∈ R.

Proof. We notice that in case q−1b ∈ Z(R) then the conclusion follows from
Lemma 2.6. Therefore we assume q−1b is not a scalar matrix.

We divide the proof into two cases.
Suppose first that a + b = λ ∈ Z(R). Thus, since q−1a ∈ Z(R) and by

easy computations, we note that G(x) = λqxq−1 and λ 6= 0 since G 6= 0. By
our assumption it follows λu2 = λ2u2 for all u ∈ S. Since λ ∈ Z(R) and
f(x1, . . . , xn) is not a polynomial identity for R, by the same argument in
Lemma 2.6, we have that λ = 1.

Assume now that a + b is not a central matrix in R, that is q−1(a + b)q /∈
Z(R). Again by Lemma 2.5, there exists some invertible matrix B ∈ Mm(H)
such that each matrix B(q−1b)B−1, B(q−1(a+ b)q)B−1 has all nonzero entries.
Denote by ϕ(x) = BxB−1 the inner automorphism induced by B. Simulating
the above argument we will write ϕ(q−1b) =

∑
hl qhlehl, ϕ(q

−1(a + b)q) =∑
hl phlehl for 0 6= qhl, 0 6= phl ∈ H. Moreover, for eij ∈ f(R),

(2.1) 0 =
(
ϕ(a)eij + ϕ(q)eijϕ(q

−1ϕ(b)
)2
.

Both left multiplying by ϕ(q−1) and right multiplying by eij the relation (2.1),
we get

0 =
(
ϕ(q−1)ϕ(a)eij + eijϕ(q

−1)ϕ(b)
)
ϕ(q)eijϕ(q

−1)ϕ(b)eij

and since q−1a ∈ Z(R), it follows that

0 = eijϕ(q
−1)

(
ϕ(a) + ϕ(b)

)
ϕ(q)eijϕ(q

−1)ϕ(b)eij .
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In particular, either the (j, i)-entry of ϕ(q−1(a+ b)q) is zero, or the (j, i)-entry
of ϕ(q−1b) is zero, which is any case a contradiction. �

Lemma 2.10. Let H be an infinite field, m be a positive integer with m ≥ 2
and R = Mm(H) be the algebra of m×m matrices over H. Assume there exist

0 6= a, b, q ∈ R such that q is an invertible matrix such that G(x) = ax+qxq−1b
for all x ∈ R. If G(x2) = G(x)2 for all x ∈ S, then either G(x) = x for all

x ∈ R or G(x) = qxq−1 for all x ∈ R.

Proof. In light of Lemmas 2.6, 2.8 and 2.9 we may assume now that q, q−1a
and q−1b are not scalar matrices. As above, by Lemma 2.5, there exists some
invertible matrix B ∈ Mm(H) such that each matrix BqB−1, B(q−1a)B−1,
B(q−1b)B−1 has all nonzero entries. In order to prove our result, without loss
of generality we may suppose that each matrix q, q−1a and q−1b has all nonzero
entries. Write q =

∑
hl qhlehl, q

−1a =
∑

hl phlehl and q−1b =
∑

hl vhlehl, for
0 6= qhl, 0 6= phl, 0 6= vhl ∈ H. Moreover, for eij ∈ f(R),

(2.2) 0 =
(
aeij + qeijq

−1b
)2
.

Left multiplying by eijq
−1 and right multiplying by eij the relation (2.2), we

get

0 = eijq
−1aeijqeijq

−1beij

which leads to the contradiction qjipjivji = 0. �

Lemma 2.11. Let K be a field of characteristic different 2, m be a positive

integer with m ≥ 2 and R = Mm(K) be the algebra of m ×m matrices over

K. If there exist 0 6= a, b, q ∈ R such that q is an invertible matrix such that

G(x) = ax+ qxq−1b for all x ∈ R. If G(x2) = G(x)2 for all x ∈ S, then either

G(x) = x for all x ∈ R or G(x) = qxq−1 for all x ∈ R.

Proof. If one assumes that K is infinite, the conclusion follows from Lemma
2.10.

Now let H be an infinite field which is an extension of the field K and let
R = Mm(H) ∼= R⊗K H. Note that the multilinear polynomial f(x1, . . . , xn)
is central-valued on R if and only if it is central-valued on R. We observe that
the generalized polynomial

(2.3)

Φ(x1, . . . , xn) = af(x1, . . . , xn)
2 + qf(x1, . . . , xn)

2q−1b

−

(
af(x1, . . . , xn) + qf(x1, . . . , xn)q

−1b

)2

is a generalized polynomial identity for R. Moreover, Φ(x1, . . . , xn) is multi-
homogeneous of multi-degree (2, . . . , 2) in the indeterminates x1, . . . , xn. On
the other hand, the complete linearization of Φ(x1, . . . , xn) leads to a multilin-
ear generalized polynomial Θ(x1, . . . , xn, y1, . . . , yn), which is of the form

Θ(x1, . . . , xn, x1, . . . , xn) = 2nΦ(x1, . . . , xn).
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Clearly, the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a generalized
polynomial identity for R and R too. Since char(K) 6= 2, we obtain Φ(r1, . . . ,
rn) = 0 for all r1, . . . , rn ∈ R, and the conclusion follows from Lemma 2.10. �

Lemma 2.12. Let K be a field of characteristic different 2, m be a positive

integer with m ≥ 2 and R = Mm(K) be the algebra of m ×m matrices over

K. If there exist 0 6= a, b ∈ R such that G(x) = ax + xb for all x ∈ R. If

G(x2) = G(x)2 for all x ∈ S, then G(x) = x for all x ∈ R. In particular one

of the following cases occurs: either a, b ∈ Z(R) and a + b = 1 or a = 0 and

b = 1, or a = 1 and b = 0.

Proof. If one assumes that K is infinite, the conclusion follows from Lemma
2.8.

Now let H be an infinite field which is an extension of the field K and let
R = Mm(H) ∼= R⊗K H. Note that the multilinear polynomial f(x1, . . . , xn)
is central-valued on R if and only if it is central-valued on R. We observe that
the generalized polynomial

(2.4)

Φ(x1, . . . , xn) = af(x1, . . . , xn)
2 + f(x1, . . . , xn)

2b

−

(
af(x1, . . . , xn) + f(x1, . . . , xn)b

)2

is a generalized polynomial identity for R. Moreover, Φ(x1, . . . , xn) is multi-
homogeneous of multi-degree (2, . . . , 2) in the indeterminates x1, . . . , xn. On
the other hand, the complete linearization of Φ(x1, . . . , xn) leads to a multilin-
ear generalized polynomial Θ(x1, . . . , xn, y1, . . . , yn), which is of the form

Θ(x1, . . . , xn, x1, . . . , xn) = 2nΦ(x1, . . . , xn).

Clearly, the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a generalized
polynomial identity for R and R too. Since char(K) 6= 2, we obtain Φ(r1, . . . ,
rn) = 0 for all r1, . . . , rn ∈ R, and the conclusion follows from Lemma 2.8. �

We also premit the following useful Lemma, which is a reduction of Propo-
sition in [19]:

Lemma 2.13. Let R be a prime ring of characteristic different 2, a ∈ R,

f(x1, . . . , xn) a multilinear polynomial over C, which is not central valued on

R. If af(r1, . . . , rn) + f(r1, . . . , rn)a = 0 for all r1, . . . , rn ∈ R, then a = 0.

2.2. The proof of Proposition 2.1 in case of inner generalized deriva-

tions

The first part of the proof of Proposition 2.1 is devoted to the case when α
is the identity map on R, that is, there exist a, b ∈ Qr such that G(x) = ax+xb
for all x ∈ R. It is not difficult to see that, if either a /∈ C or b /∈ C, then the
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generalized polynomial

(2.5)

Φ(x1, . . . , xn) = af(x1, . . . , xn)
2 + f(x1, . . . , xn)

2b

−

(
af(x1, . . . , xn) + f(x1, . . . , xn)b

)2

is a non-trivial generalized polynomial identity for R.
It follows from [12] that Φ(x1, . . . , xn) is a non-trivial generalized polynomial

identity for Qr. By the well-known Martindale’s theorem of [29], Qr is a prim-
itive ring having nonzero socle with the field C as its associated division ring.
By [21, p. 75] Qr is isomorphic to a dense subring of the ring of linear transfor-
mations of a vector space V over C, containing nonzero linear transformations
of finite rank.

If dimCV = k ≥ 2 is a finite positive integer, then Qr
∼= Mk(C) and the

conclusion follows from Lemma 2.12.
Assume now that dimCV = ∞. As in lemma 2 in [35], the set f(R) =

{f(r1, . . . , rn) | ri ∈ R} is dense on R. By the fact that Φ(r1, . . . , rn) = 0 is a
generalized polynomial identity of R, we know that R satisfies the generalized
polynomial identity

(2.6) ax2 + x2b− (ax+ xb)2

and the required conclusion follows from [17].
We finally consider the case a, b ∈ C, that is G(x) = λx for all x ∈ R, with

λ = a+ b ∈ C. Then by (2.5) one has that (λ−λ2)f(x1, . . . , xn)
2 is an identity

for R. Since f(x1, . . . , xn) is not an identity for R, it follows that either λ = 0
or λ = 1. Moreover G 6= 0 implies λ = 1, that is G(x) = x for all x ∈ R.

2.3. The proof of Proposition 2.1 in case of inner associated auto-

morphism

Assume now that α is an X-inner automorphism of R, that is, there exists
an element q ∈ Qr such that α(x) = qxq−1 for all x ∈ R. In case q ∈ C, the
conclusion follows from Subsection 2.2. Thus we consider q /∈ C.

Hence R satisfies the generalized polynomial identity

(2.7)

Φ(x1, . . . , xn) = af(x1, . . . , xn)
2 + qf(x1, . . . , xn)

2q−1b

−

(
af(x1, . . . , xn) + qf(x1, . . . , xn)q

−1b

)2

.

If q−1b ∈ C, then (2.7) reduces to

(2.8) (a+ b)f(x1, . . . , xn)
2 =

(
(a+ b)f(x1, . . . , xn)

)2

.

Moreover in case a+b = λ ∈ C, then by (2.8) one has that (λ−λ2)f(x1, . . . , xn)
2

is an identity for R. Since f(x1, . . . , xn) is not an identity for R, it follows that
either λ = 0 or λ = 1. Since G 6= 0, we get λ = 1 and G(x) = x for all x ∈ R.



GENERALIZED SKEW DERIVATIONS AS JORDAN HOMOMORPHISMS 201

Consider now the case a + b /∈ C. It follows that (2.8) is a non-trivial
generalized polynomial identity for R.

On the other hand, in case {1, q−1b} are linearly C-independent, then (2.7)
is a non-trivial generalized polynomial identity for R.

Therefore in any case Φ(x1, . . . , xn) is a non-trivial generalized polynomial
identity forR. It follows from [12] that Φ(x1, . . . , xn) is a non-trivial generalized
polynomial identity for Qr. As above, by [29], Qr is a primitive ring having
nonzero socle with the field C as its associated division ring. By [21, p. 75]
Qr is isomorphic to a dense subring of the ring of linear transformations of a
vector space V over C, containing nonzero linear transformations of finite rank.

If dimCV = k ≥ 2 is a finite positive integer, then Qr
∼= Mk(C) and the

conclusion follows from Lemma 2.11.
Assume now that dimCV = ∞. As in Lemma 2 in [35], the set S = f(R)

is dense on R. By the fact that Φ(r1, . . . , rn) = 0 is a generalized polynomial
identity of R, we know that R satisfies the generalized polynomial identity

(2.9) ax2 + qx2q−1b− (ax+ qxq−1b)2

and the required conclusions follows from Lemma 1.1.

2.4. The proof of Proposition 2.1 in case of outer associated auto-

morphism

We finally prove Proposition 2.1 in the case α is an X-outer automorphism
of R. In light of Subsection 2.2, we consider α is not the identity map on R.

In view of [13] we know that R and Qr satisfy the same generalized polyno-
mial identities with automorphisms. Therefore

(2.10)

Φ(x1, . . . , xn) = af(x1, . . . , xn)
2 + α(f(x1, . . . , xn)

2)b

−

(
af(x1, . . . , xn) + α(f(x1, . . . , xn))b

)2

is also satisfied by Qr. Moreover, Qr is a centrally closed prime C-algebra.
Note that if b = 0 we are done by Subsection 2.2.

We now suppose that b 6= 0. In this case, it follows from [14, Main Theorem]
that Φ(x1, . . . , xn) is a non-trivial generalized identity for R and for Qr. By
[22, Theorem 1] we get that RC has non-zero socle and Qr is primitive. Since α
is an outer automorphism and any (xi)

α-word degree in Φ(x1, . . . , xn) is equal
to 2 and char(R) = 0 or char(R) = p > 2, then by [14, Theorem 3], Qr satisfies
the generalized polynomial identity

(2.11)

Φ(x1, . . . , xn) = af(x1, . . . , xn)
2 +

(
fα(y1, . . . , yn)

2

)
b

−

(
af(x1, . . . , xn) + fα(y1, . . . , yn)b

)2

,
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where we denote by fα(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn)
by replacing each coefficient γσ with α(γσ). Notice that fα(x1, . . . , xn) is not
central valued on R.

By (2.11) Qr satisfies both

(2.12) af(x1, . . . , xn)
2 −

(
af(x1, . . . , xn)

)2

and

(2.13)

(
fα(y1, . . . , yn)

2

)
b−

(
fα(y1, . . . , yn)b

)2

.

In light of Subsection 2.2 one has that:

• either a = 0 or a = 1;
• either b = 0 or b = 1.

Since b 6= 0, it follows that b = 1 and a = 0 or a = 1. In case a = 0, then G = α
and we are done.

Therefore, we suppose a = 1 and prove that a contradiction follows. In fact,
in this last case and by computations on (2.11), we have that Qr satisfies

(2.14) f(x1, . . . , xn)f
α(y1, . . . , yn)b + fα(y1, . . . , yn)bf(x1, . . . , xn).

By Lemma 2.13 it follows fα(y1, . . . , yn)b = 0 which implies the contradiction
b = 0.

3. The proof of Theorem 1

Let us first recall the following:

Fact 3.1. Let R be a prime ring, D be an X-outer skew derivation of R and α
be an X-outer automorphism of R. If Φ(xi,D(xi), α(xi)) is a generalized poly-
nomial identity for R, then R also satisfies the generalized polynomial identity
Φ(xi, yi, zi), where xi, yi and zi are distinct indeterminates ([16, Theorem 1]).

3.1. The proof of Theorem 1

As remarked in the Introduction, we can write G(x) = bx + d(x) for all
x ∈ R, b ∈ Qr and d is a skew derivation of R (see [8]). By [16, Theorem 2] we
know that R and Qr satisfy the same generalized polynomial identities with a
single skew derivation. Thus Qr satisfies
(3.1)
Φ(x1, . . . , xn, d(x1), . . . , d(xn)) = af(x1, . . . , xn)

2 + d(f(x1, . . . , xn)
2)

−

(
af(x1, . . . , xn) + d(f(x1, . . . , xn))

)2

.

If d is X-inner, then there exist c ∈ Qr and α ∈ Aut(Qr) such that d(x) =
cx+α(x)c for all x ∈ R. In this case G(x) = (a+c)x+α(x)c and by Proposition
2.1 either G(x) = x for all x ∈ R, or G = α.
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Suppose that d is X-outer and that α ∈ Aut(Qr) is the associated auto-
morphism of d. We denote by fd(x1, . . . , xn) the polynomial obtained from
f(x1, . . . , xn) by replacing each coefficient γσ with d(γσ). When α is the iden-
tity map on R, then d is an usual derivation of R. And hence (3.1) implies
that R satisfies

(3.2)

af(x1, . . . , xn)
2

+

(
fd(x1, . . . , xn) +

∑

i

f(x1, . . . , d(xi), . . . , xn)

)
f(x1, . . . , xn)

+ f(x1, . . . , xn)

(
fd(x1, . . . , xn) +

∑

i

f(x1, . . . , d(xi), . . . , xn)

)

−

(
af(x1, . . . , xn) + fd(x1, . . . , xn) +

∑

i

f(x1, . . . , d(xi), . . . , xn)

)2

.

In light of Kharchenko’s Theorem in [23], by (3.2) it follows that R satisfies

(3.3)

af(x1, . . . , xn)
2

+

(
fd(x1, . . . , xn) +

∑

i

f(x1, . . . , yi, . . . , xn)

)
f(x1, . . . , xn)

+ f(x1, . . . , xn)

(
fd(x1, . . . , xn) +

∑

i

f(x1, . . . , yi, . . . , xn)

)

−

(
af(x1, . . . , xn) + fd(x1, . . . , xn) +

∑

i

f(x1, . . . , yi, . . . , xn)

)2

.

In particular

(3.4)

(∑

i

f(x1, . . . , yi, . . . , xn)

)
f(x1, . . . , xn)

+ f(x1, . . . , xn)

(∑

i

f(x1, . . . , yi, . . . , xn)

)

−

(∑

i

f(x1, . . . , yi, . . . , xn)

)2

is a generalized identity for R. Replacing any yi with [u, xi] for u ∈ R such
that u /∈ Z(R), one has that R satisfies the generalized polynomial identity

(3.5)

[
q, f(x1, . . . , xn)

2

]
−

[
q, f(x1, . . . , xn)

]2

and by Subsection 2.2 we get the contradiction u ∈ Z(R).
Moreover if d = 0, the required conclusion follows again from Subsection 2.2.

Hence in what follows we always assume that 1R 6= α ∈ Aut(R) and d 6= 0. It
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should be remarked that

d

(
γσ · xσ(1) · xσ(2) · · ·xσ(n)

)

= d(γσ)xσ(1) · xσ(2) · · ·xσ(n) + α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).

So we have

d(f(x1, . . . , xn))

= fd(x1, . . . , xn) +
∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).

Since Qr satisfies Φ(x1, . . . , xn, d(x1), . . . , d(xn)), then it also satisfies

af(x1, . . . , xn)
2

(3.6)

+

(
fd(x1, . . . , xn) +

∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n)

)
f(x1, . . . , xn)

+fα(α(x1), . . . , α(xn))

(
fd(x1, . . . , xn) +

∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n)

)

−

(
af(x1, . . . , xn) + fd(x1, . . . , xn) +

∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n)

)2

.

By [16, Theorem 1] it follows that Qr satisfies Φ(x1, . . . , xn, y1, . . . , yn), that
is

af(x1, . . . , xn)
2

(3.7)

+

(
fd(x1, . . . , xn) +

∑

σ∈Sn

α(γσ)
n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

)
f(x1, . . . , xn)

+fα(α(x1), . . . , α(xn))

(
fd(x1, . . . , xn) +

∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

)

−

(
af(x1, . . . , xn) + fd(x1, . . . , xn) +

∑

σ∈Sn

α(γσ)
n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

)2

.

In particular, Qr satisfies

af(x1, . . . , xn)
2(3.8)

+

( ∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

)
f(x1, . . . , xn)

+fα(α(x1), . . . , α(xn))

( ∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

)
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−

( ∑

σ∈Sn

α(γσ)
n−1∑

j=0

α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

)2

.

Here we divide the argument in two subcases. Let us first consider the case
when α is an inner automorphism of R. Then there exists an invertible element
q ∈ Qr such that α(x) = qxq−1 for all x ∈ R. Since 1R 6= α ∈ Aut(R), we may
assume that q /∈ C. Moreover, it is clear that α(γσ) = γσ for all coefficients
involved in f(x1, . . . , xn).

If we choose in (3.8) x1 = 0 and y1 = qz1, we have that
(
qf(z1, x2, . . . , xn)

)2

is satisfied by Qr. Therefore by the result in [33] and since f(x1, . . . , xn) is not
an identity for Qr, we get the contradiction q = 0.

We now assume that α is X-outer. In light of Fact 3.1 and the relation (3.8),
Qr satisfies the generalized polynomial identity

af(x1, . . . , xn)
2 +

( ∑

σ∈Sn

α(γσ)

n−1∑

j=0

zσ(1) · · · zσ(j)yσ(j+1)xσ(j+2) · · ·xσ(n)

)
f(x1, . . . , xn)(3.9)

+fα(α(x1), . . . , α(xn))

( ∑

σ∈Sn

α(γσ)

n−1∑

j=0

zσ(1) · · · zσ(j)yσ(j+1)xσ(j+2) · · ·xσ(n)

)

−

( ∑

σ∈Sn

α(γσ)

n−1∑

j=0

zσ(1) · · · zσ(j)yσ(j+1)xσ(j+2) · · ·xσ(n)

)2

.

Let us write∑

σ∈Sn−1

α(γσ)xσ(1) · · ·xσ(i−1)xσ(i+1) · · ·xσ(n) = ti(x1, . . . , xi−1, xi+1, . . . , xn),

where any tj is a multilinear polynomial of degree n− 1 and xj never appears
in any monomial of tj .

Thus fα(x1, . . . , xn) =
∑

i xiti(x1, . . . , xi−1, xi+1, . . . , xn).
Moreover, since fα(x1, . . . , xn) 6= 0, then there exists i ≥ 1 such that

ti(x1, . . . , xi−1, xi+1, . . . , xn) 6= 0.

For all k = 1, . . . , n, we choose in (3.9):

• xk = 0;
• for all j 6= k, yσ(j) = 0;
• for all j 6= k, zσ(j) = 0.

Therefore by (3.9) we assert that Qr satisfies the generalized polynomial iden-
tity

(3.10)

(
yktk(x1, . . . , xk−1, xk+1, . . . , xn)

)2

.

As above, by [33] we have that any polynomial tk(x1, . . . , xk−1, xk+1, . . . , xn)
is an identity for Qr and this leads to the contradiction fα(x1, . . . , xn) = 0.
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