ALMOST DERIVATIONS ON THE BANACH ALGEBRA $C^n[0,1]$

KIL-WOUNG JUN AND DAL-WON PARK*

1. Introduction

A linear map T from a Banach algebra A into a Banach algebra B is almost multiplicative if $||T(fg) - T(f)T(g)|| \le \epsilon ||f|| ||g|| (f, g \in A)$ for some small positive ϵ . B. E. Johnson [4, 5] studied whether this implies that T is near a multiplicative map in the norm of operators from A into B. K. Jarosz [2, 3] raised the conjecture: If T is an almost multiplicative functional on uniform algebra A, there is a linear and multiplicative functional F on A such that $||T-F|| \le \epsilon'$, where $\epsilon' \to 0$ as $\epsilon \to 0$. B. E. Johnson [4] gave an example of non-uniform commutative Banach algebra which does not have the property described in the above conjecture. He proved also that C(K) algebras and the disc algebra A(D) have this property [5]. We extend this property to a derivation on a Banach algebra.

Let \mathcal{A} be a commutative Banach algebra with unit. A Banach \mathcal{A} -module is a Banach space \mathcal{M} together with a continuous homomorphism $\rho: \mathcal{A} \to \mathcal{B}(\mathcal{M})$. A derivation, or a module derivation, of \mathcal{A} into \mathcal{M} is a linear map $D: \mathcal{A} \to \mathcal{M}$ which satisfies the identity

$$D(fg) = \rho(f)D(g) + \rho(g)D(f), \quad f, g \in \mathcal{A}.$$

In this paper we show that there exists a continuous derivation near a continuous almost derivation on a Banach algebra of differentiable functions.

We now give a precise definition of almost derivation.

Received May 24, 1995. Revised March 18, 1996.

¹⁹⁹¹ AMS Subject Classification: Primary 46J10.

Key words and phrases: Strong ϵ -almost derivation, ϵ -almost derivation.

^{*} Supported in part by Non Directed Research Fund. Korea Research Foundation, 1994.

DEFINITION 1. A linear map $D: \mathcal{A} \to \mathcal{M}$ is an ϵ -almost derivation, or an ϵ -almost module derivation if D satisfies

$$||D(fg) - \rho(f)D(g) - \rho(g)D(f)|| \le \epsilon ||f|| ||g||, \quad f, g \in \mathcal{A}.$$

DEFINITION 2. A linear map $D: \mathcal{A} \to \mathcal{M}$ is a strong ϵ -almost derivation, or a strong ϵ -almost module derivation if D satisfies

$$||D(fg) - \rho(f)D(g) - \rho(g)D(f)|| \le \epsilon ||fg||, \quad f, g \in \mathcal{A}.$$

Note that if $D: \mathcal{A} \to \mathcal{M}$ is a strong ϵ -almost derivation, then D is an ϵ -almost derivation. Let D be a derivation on a Banach algebra \mathcal{A} . If F is a linear map on \mathcal{A} such that

$$||D(f) - F(f)|| \le \epsilon ||f||, \quad f \in \mathcal{A},$$

then it is easy to show that F is an ϵ -almost derivation on A.

Let $C^n[0,1]$ denote the algebra of all complex-valued functions on [0,1] which have n continuous derivatives. It is well known that $C^n[0,1]$ is a Banach algebra under the norm

$$||f||_n = \max_{t \in [0,1]} \sum_{k=0}^n |f^{(k)}(t)|/k!.$$

Assume that \mathcal{M} is a Banach $C^n[0,1]$ -module. We set $z(t)=t,\ 0 \le t \le 1$. The differential subspace is the set \mathcal{W} of all vectors m in \mathcal{M} such that the map $p \to \rho(p')m$ is continuous on \mathcal{P} , where \mathcal{P} is the dense subalgebra of polynomials in z. It is clear that \mathcal{W} is a linear subspace of \mathcal{M} and $m \in \mathcal{W}$ iff $|||m||| = \sup\{||\rho(p)m||: ||p||_{n-1} = 1\} < \infty$.

EXAMPLE. Let $\rho:C^1[0,1]\to \mathcal{B}(\mathcal{C})$ be defined by $\rho(f)=f(0)$ where \mathcal{C} is the complex number field. Then \mathcal{C} is a Banach $C^1[0,1]$ -module. We define $D:C^1[0,1]\to \mathcal{C}$ by $D(f)=f'(0)+f(0)\epsilon$. It is easy to see that D is a strong ϵ -almost derivation on $C^1[0,1]$. We put $F(f)=f'(0),\quad f\in C^1[0,1]$. Then F is a derivation such that $|D(f)-F(f)|\leq \epsilon|f|,\quad f\in C^1[0,1]$.

We need the following result from [1] to prove our main theorem.

THEOREM 3. Let \mathcal{M} be a $C^n[0,1]$ -module with differential subspace \mathcal{W} . Then

- (1) $||m|| \le |||m|||, m \in \mathcal{W}.$
- (2) W is a Banach space with respect to the norm ||| · |||.
- (3) W is a $C^{n-1}[0,1]$ module. There exists a unique continuous homomorphism $\gamma: C^{n-1}[0,1] \to \mathcal{B}(W)$ such that

$$\gamma(p)m=
ho(p)m,\quad m\in\mathcal{W},\quad p\in\mathcal{P}.$$

2. Results

In this section we denote $||f||_n$ by ||f||, $f \in C^n[0,1]$. Recall that the ascent of eigenvalue λ for a linear operator T is the smallest integer k such that $(T - \lambda I)^{k+1}x = 0$ implies $(T - \lambda I)^k x = 0$. We first consider that a strong ϵ -almost derivation D from $C^n[0,1]$ into a $C^n[0,1]$ -module \mathcal{M} is near a derivation.

THEOREM 4. Let \mathcal{M} be a finite dimensional Banach $C^n[0,1]$ -module. If $D:C^n[0,1]\to \mathcal{M}$ is a continuous strong ϵ -almost derivation and the ascent of every eigenvalue for $\rho(z)$ less than n/2 then there exists a continuous derivation $F:C^n[0,1]\to \mathcal{M}$ such that

$$\|D(f)-F(f)\|\leq \epsilon'\|f\|,\quad f\in C^n[0,1]$$

where $\epsilon' \to 0$ as $\epsilon \to 0$.

Proof. By description of [1] for the derivations from $C^n[0,1]$ to a finite dimensional Banach $C^n[0,1]$ -module \mathcal{M} , we can suppose that $\rho(z)$ has a single eigenvalue λ_0 on \mathcal{M} and that $\lambda_0 = 0$ for simplicity. A further simplification is possible, and so we suppose $\mathcal{M} = sp\{m_0, \rho(z)m_0, ..., \rho(z)^k m_0\}$ where m_0 is a fixed vector and $2k+2 \leq n$. With respect to this basis, the operator $\rho(f)(f \in C^n[0,1])$ has the matrix

$$\begin{pmatrix} \delta_{0}(f) & 0 & 0 & \cdots & 0 \\ \delta_{1}(f) & \delta_{0}(f) & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ \vdots & & & & \ddots & \vdots \\ \delta_{k}(f) & \delta_{k-1}(f) & & \cdots & \delta_{\ell}(f) \end{pmatrix}$$

where $\delta_i(f) = f^{(i)}(0)/i!$. Since D is a continuous strong ϵ -almost derivation there exist continuous linear functionals $\theta_0, \theta_1, ..., \theta_k$ on $C^n[0, 1]$ such that

$$D(f) = \sum_{i=0}^{k} \theta_i(f) \rho(z)^i m_0, \quad f \in C^n[0, 1].$$

Thus there is a constant M > 0 such that

$$(1) \qquad |\theta_{j}(fg) - \sum_{i=0}^{j} [\delta_{j-i}(f)\theta_{i}(g) + \delta_{j-i}(g)\theta_{i}(f)]| \le \epsilon M ||fg||$$

for all $f, g \in C^n[0, 1], j = 0, 1, ..., k$.

Now we define

$$F(f) = \rho(f')D(z), \quad f \in C^{n}[0,1].$$

Since $2k + 2 \le n$, it is easy to show that F is well defined and a continuous derivation from $C^n[0,1]$ into \mathcal{M} . $D(z) = \sum_{i=0}^k \theta_i(z) \rho(z)^i m_0$ gives

$$F(f) = \sum_{j=0}^{k} \sum_{i=0}^{j} \delta_{i}(f')\theta_{j-i}(z)\rho(z)^{j} m_{0}.$$

We put

$$F_j(f) = \sum_{i=0}^{j} \delta_i(f')\theta_{j-i}(z), \quad f \in C^n[0,1].$$

For a polynomial $p(z) = \alpha_0 + \alpha_1 z + \cdots + \alpha_m z^m \ (m \geq 2j + 2)$, the formula (1) implies $|\theta_j(1)| \leq \epsilon M$ and

$$|\theta_{j}(\alpha_{2j+2}z^{2j+2} + \dots + \alpha_{m}z^{m})|$$

$$\leq \epsilon M \|\alpha_{2j+2}z^{2j+2} + \dots + \alpha_{m}z^{m}\|$$

$$\leq \epsilon M [\|p\| + \|\alpha_{0} + \alpha_{1}z + \dots + \alpha_{2j+1}z^{2j+1}\|]$$

$$< 2^{n+1}\epsilon M \|p\|.$$

Now we prove the following formula by induction;

(3)
$$|\theta_i(z^i) - i\theta_{i-i+1}(z)| \le \epsilon M(2^{i+1} - 1), \quad i = 1, 2, ..., j+1.$$

If j = 0, it is trivial. Assume that

$$|\theta_{j-1}(z^i) - i\theta_{j-i}(z)| \le \epsilon M(2^{i+1} - 1), j > 1, \quad i = 1, 2, ..., j.$$

From (1) and assumption we obtain for i = 1, 2, ..., j + 1,

$$\begin{split} |\theta_{j}(z^{i}) - i\theta_{j-i+1}(z)| \\ & \leq |\theta_{j}(z^{i}) - \theta_{j-1}(z^{i-1}) - \theta_{j-i+1}(z)| \\ & + |\theta_{j-1}(z^{i-1}) - (i-1)\theta_{j-i+1}(z)| \\ & \leq \epsilon M(2^{i+1} - 1). \end{split}$$

The formula (3) gives

(4)
$$|\alpha_{2}\theta_{j}(z^{2}) + \dots + \alpha_{j+1}\theta_{j}(z^{j+1}) - 2\alpha_{2}\theta_{j-1}(z) - \dots - (j+1)\alpha_{j+1}\theta_{0}(z)| \le 2^{j+3}\epsilon M||p||.$$

We also show the following formula by induction;

(5)
$$|\theta_k(z^{j+1})| \le \epsilon M \sum_{i=0}^k 2^{j+1-i}, \quad k = 0, 1, 2, ..., j-1.$$

If j=1 the formula (1) implies $|\theta_0(z^2)| \leq 4M\epsilon$. Assume that

$$|\theta_k(z^j)| \le \epsilon M \sum_{i=0}^k 2^{j-i}, \quad k = 0, 1, ..., j-2.$$

If $j \geq 2k+1$ it follows from (1) that $|\theta_k(z^{j+1})| \leq 2^{j+1} \epsilon M$. Otherwise (1) implies

$$|\theta_k(z^{j+1}) - \theta_{2k-j}(z^{k+1})| \le 2^{j+1} \epsilon M.$$

Since $2k - j \le k - 1$ the assumption gives

$$|\theta_{2k-j}(z^{k+1})| \le \epsilon M \sum_{i=0}^{2k-j} 2^{k+1-i}$$

and so

$$|\theta_k(z^{j+1})| \le 2^{j+1} \epsilon M + |\theta_{2k-j}(z^{k+1})| \le \epsilon M \sum_{j=0}^k 2^{j+1-i}.$$

Now (1) and (5) give us

$$|\theta_{j}(\alpha_{j+2}z^{j+2} + \dots + \alpha_{2j+1}z^{2j+1})|$$

$$\leq \epsilon M \|\alpha_{j+2}z^{j+2} + \dots + \alpha_{2j+1}z^{2j+1}\|$$

$$+ \|p\|(|\theta_{0}(z^{j+1})| + \dots + |\theta_{j-1}(z^{j+1})|)$$

$$\leq (2^{2j+2} + j2^{j+2})\epsilon M \|p\|.$$

The formulas (2), (4) and (6) imply

$$|\theta_j(p) - F_j(p)| \le 2^{n+2} \epsilon M ||p||.$$

Since θ_i and F_i are continuous, we have

$$|\theta_j(f) - F_j(f)| \le 2^{n+2} \epsilon M ||f||, \quad f \in C^n[0, 1].$$

Thus there exist a constant $\epsilon' > 0$ and a continuous derivation F such that

$$||D(f) - F(f)|| < \epsilon' ||f||, \quad f \in C^n[0, 1]$$

where $\epsilon' \to 0$ as $\epsilon \to 0$. This completes the proof of the theorem.

We now consider that an ϵ -almost derivation from $C^n[0,1]$ into a Banach $C^n[0,1]$ -module \mathcal{M} is near a derivation.

THEOREM 5. Let \mathcal{M} be a Banach $C^n[0,1]$ -module. If $D:C^n[0,1]\to \mathcal{M}$ is a continuous ϵ - almost derivation and $\rho(z)^iD(z^j)=0$ for $i+j\geq n+1, i,j=0,1,...,n$ then there is a continuous derivation $F:C^n[0,1]\to \mathcal{M}$ such that

$$||D(f) - F(f)|| \le \epsilon' ||f||, \quad f \in C^n[0, 1]$$

where $\epsilon' \to 0$ as $\epsilon \to 0$.

Proof. We define $\theta: C^n[0,1] \times C^n[0,1] \to \mathcal{M}$ by $\theta(f,g) = D(fg) - \rho(f)D(g) - \rho(g)D(f)$, $f,g \in C^n[0,1]$. Then θ is a continuous bilinear map. We prove the following formula by induction; For $m \geq 2$

$$D(z^{m}) = m\rho(z^{m-1})D(z) + \rho(z^{m-2})\theta(z, z) + \rho(z^{m-3})\theta(z, z^{2}) + \dots + \theta(z, z^{m-1}).$$

It is trivial for m=2. Assume that it holds for m-1. Then

$$D(z^{m}) = \theta(z, z^{m-1}) + \rho(z)D(z^{m-1}) + \rho(z^{m-1})D(z)$$

= $m\rho(z^{m-1})D(z) + \rho(z^{m-2})\theta(z, z) + \rho(z^{m-3})\theta(z, z^{2})$
+ \cdots + $\theta(z, z^{m-1})$.

Since $\rho(z)^i D(z^j) = 0$ for $i + j \ge n + 1$, i, j = 0, 1, ..., n, it is easy to show that $\rho(z)^i \theta(z, z^j) = 0$ for $i + j \ge n$. If $n \ge 2$ we get for $p(z) = \alpha_0 + \alpha_1 z + \cdots + \alpha_m z^m \ (m \ge n)$,

$$D(p) = \rho(p')D(z) + \alpha_n[\rho(z^{n-2})\theta(z,z) + \rho(z^{n-3})\theta(z,z^2) + \cdots + \rho(z)\theta(z,z^{n-2}) + \theta(z,z^{n-1})]$$

$$+ \alpha_{n-1}[\rho(z^{n-3})\theta(z,z) + \rho(z^{n-4})\theta(z,z^2) + \cdots + \theta(z,z^{n-2})]$$

$$+ \cdots + \alpha_2\theta(z,z) + D(\alpha_0)$$

Since $|\alpha_i| \leq ||p||$, i = 0, 1, ..., n and $||\rho|| > 1$

(7)
$$||D(p) - \rho(p')D(z)|| \le \epsilon [(n-1)n/2 + 1]2^n ||\rho|| ||p||.$$

If n=1 we have $D(p)=D(\alpha_0)+\alpha_1D(z)$. Thus the formula (7) holds for n=1. By assumption we get $D(z) \in \mathcal{W}$ and, so it follows from Theorem 3 that there exists a unique continuous homomorphism $\gamma: C^{n-1}[0,1] \to \mathcal{B}(\mathcal{W})$ such that

$$\gamma(p)D(z)=\rho(p)D(z),\quad p\in\mathcal{P}.$$

We define $F: C^n[0,1] \to \mathcal{M}$ by $F(f) = \gamma(f')D(z)$. Then F is a continuous derivation which satisfies

$$||D(f) - F(f)|| \le \epsilon[(n-1)n/2 + 1]2^n ||\rho|| ||f||, \quad f \in C^n[0, 1].$$

This completes the proof of the theorem.

REMARK. Let $D: C^n[0,1] \to \mathcal{B}(\mathcal{C})$ be the continuous ϵ -almost derivation as in Example. Then $\rho(z)m = 0$ for $m \in \mathcal{C}$ and $D(z^2) = 0$.

Kil-Woung Jun and Dal-Won Park

References

- W. G. Bade and P. C. Curtis, Jr., The structure of module derivations of Banach algebras of differentiable functions, J. Functional Analysis 28 (1978), 226-247.
- K. Jarosz, Perturbations of Banach Algebras, Lecture Notes in Math. 1120, Springer-Verlag, 1985.
- 3.. K. Jarosz, Ultraproducts and small bound perturbations, Pacific J. Math. 148 (1991), 81-88.
- 4.. B. E. Johnson, Approximately multiplicative functionals. J. London Math. Soc. 34 (1986), 489-510.
- 5.. B. E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. 37 (1988), 284-316.

KIL-WOUNG JUN

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJON 305-764, KOREA

Dal-Won Park

DEPARTMENT OF MATHEMATICS EDUCATION, KONGJU NATIONAL UNIVERSITY, KONGJU 314-701, KOREA