b-GENERALIZED DERIVATIONS ON BANACH ALGEBRAS

Husain Alhazmi

Abstract

In this paper, we show, among others, that if A is a Banach algebra satisfying a functional identity involving a b-generalized derivation F on A, under some mild conditions, is of the form $F(x)=a x$ for all $x \in R$, where $a \in Q_{r}$, a right Martindale quotient ring of A.

1. Introduction and results

Throughout this paper, we let A denote a prime Banach algebra over a real or complex field with identity $e, Z(A)$ denote center of A, M be a closed linear subspace of A and Q_{r} right Martindale quotient ring of A. "A linear mapping $d: A \longrightarrow A$ is said to be a derivation on A if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in A$ ". In [9, Theorem 2], Posner proved that "if a prime ring R admits a nonzero derivation d such that $[d(x), x] \in Z(R)$ for all $x \in R$, then R is commutative". Further, generalizations of Posner's result can be found in [4,14-16]. "An additive mapping $F: R \longrightarrow R$ is called a generalized derivation of R if there exists a derivation d of R such that $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$ ".

In [5, 6], Herstein established that " a ring R is commutative if it has no nonzero nilpotent ideal and there is a fixed integer $n>1$ such that $(x y)^{n}=$ $x^{n} y^{n}$ for all $x, y \in R$ " (see also [3]). In the case of Banach algebra, Yood [17] sharpened these results. More precisely, he proved the following result: "Suppose that there are non-empty open subsets G_{1} and G_{2} of A such that for each $x \in G_{1}$ and $y \in G_{2}$ there is an integer $n=n(x, y)>1$ such that either $(x y)^{n}-x^{n} y^{n}$ or $(x y)^{n}-y^{n} x^{n}$ lies in M. Then $[x, y] \in M$ for all $x, y \in A$ ".

Motivated by above results, very recently Ali and Khan[1] proved the following result:

Theorem 1.1. Let A be a unital prime Banach algebra and G_{1}, G_{2} be open subsets of A such that for each $x \in G_{1}$, and $y \in G_{2}$ there is an integer $m=$ $m(x, y)>1$. If A admits a nonzero continuous linear derivation $d: A \rightarrow A$

[^0]such that either $d\left((x y)^{m}\right)-x^{m} y^{m} \in Z(A)$ or $d\left((x y)^{m}\right)-y^{m} x^{m} \in Z(A)$, then A is commutative.

Many authors have extended above result for generalized derivations, generalized skew derivations (see $[2,7,10-13]$ and references therein).

We shall study the analogue problem on Banach algebras involving some special class of derivations namely b-generalized derivations. We will now recall the definition of a b-generalized derivation of A. In a recent paper [8], Koşan and Lee proposed that "an additive map $F: R \rightarrow Q_{r}$ is called a left b-generalized derivation, with an associated additive mapping δ from R to Q_{r}, if $F(x y)=$ $F(x) y+b x \delta(y)$ for all $x, y \in R$ and $b \in Q_{r}$, where R is a prime ring and Q_{r} is the right Martindale quotient ring of R ". Also, they proved that, "if R is a prime ring, then δ is a derivation of R ". Particularly, we say F is a b-generalized derivation with an associated pair (b, δ). Clearly, "any generalized derivation with an associated derivation δ is a b-generalized derivation with an associated pair $(1, \delta)$ ". Similarly, "the mapping $x \rightarrow a x+b[x, c]$, for $a, b, c \in Q_{r}$, is a b generalized derivation with an associated pair $(b, \operatorname{ad}(c))$, where $\operatorname{ad}(c)(x)=[x, c]$ denotes the inner derivation of R induced by the element c ". More generally, "the mapping $x \rightarrow a x+q x c$, for $a, c, q \in Q_{r}$, is a b-generalized derivation with an associated pair $(q, a d(c)) "$. This mapping is called an inner b-generalized derivation.

We deal with the following:
Theorem 1.2. Let A be a noncommutative unital prime Banach algebra and G_{1}, G_{2} be open subsets of A such that for each $x \in G_{1}$, and $y \in G_{2}$ there is an integer $m=m(x, y)>1$. If A admits a continuous linear b-generalized derivation $F: A \rightarrow A$ such that either $F\left((x y)^{m}\right)-x^{m} y^{m} \in Z(A)$ or $F\left((x y)^{m}\right)-$ $y^{m} x^{m} \in Z(A)$, then $F(x)=a x$ for all $x \in A$, where $a \in Q_{r}$.
Theorem 1.3. Let A be a noncommutative unital prime Banach algebra and G_{1}, G_{2} be open subsets of A such that for each $x \in G_{1}$, and $y \in G_{2}$ there is an integer $m=m(x, y)>1$. If A admits a continuous linear b-generalized derivation $F: A \rightarrow A$ such that either $F\left((x y)^{m}\right)+x^{m} y^{m} \in Z(A)$ or $F\left((x y)^{m}\right)-$ $y^{m} x^{m} \in Z(A)$, then $F(x)=a x$ for all $x \in A$, where $a \in Q_{r}$.

The following are immediate consequences of Theorem 1.2 and Theorem 1.3.
Corollary 1.4. Let A be a noncommutative unital prime Banach algebra and G_{1}, G_{2} be open subsets of A such that for each $x \in G_{1}$, and $y \in G_{2}$ there is an integer $m=m(x, y)>1$. If A admits a continuous linear generalized derivation $F: A \rightarrow A$ such that either $F\left((x y)^{m}\right)-x^{m} y^{m} \in Z(A)$ or $F\left((x y)^{m}\right)-y^{m} x^{m} \in$ $Z(A)$, then $F(x)=$ ax for all $x \in A$, where $a \in Q_{r}$.
Corollary 1.5. Let A be a unital noncommutative prime Banach algebra and G_{1}, G_{2} be open subsets of A such that for each $x \in G_{1}$, and $y \in G_{2}$ there is an integer $m=m(x, y)>1$. If A admits a nonzero continuous linear derivation $d: A \rightarrow A$ such that either $d\left((x y)^{m}\right)-x^{m} y^{m} \in Z(A)$ or $d\left((x y)^{m}\right)-y^{m} x^{m} \in$ $Z(A)$, then $d=0$.

Corollary 1.6. Let A be a noncommutative unital prime Banach algebra and G_{1}, G_{2} be open subsets of A such that for each $x \in G_{1}$, and $y \in G_{2}$ there is an integer $m=m(x, y)>1$. If A admits a continuous linear generalized derivation $F: A \rightarrow A$ such that either $F\left((x y)^{m}\right)+x^{m} y^{m} \in Z(A)$ or $F\left((x y)^{m}\right)-y^{m} x^{m} \in$ $Z(A)$, then $F(x)=$ ax for all $x \in A$, where $a \in Q_{r}$.

Corollary 1.7. Let A be a unital noncommutative prime Banach algebra and G_{1}, G_{2} be open subsets of A such that for each $x \in G_{1}$, and $y \in G_{2}$ there is an integer $m=m(x, y)>1$. If A admits a nonzero continuous linear derivation $d: A \rightarrow A$ such that either $d\left((x y)^{m}\right)+x^{m} y^{m} \in Z(A)$ or $d\left((x y)^{m}\right)-y^{m} x^{m} \in$ $Z(A)$, then $d=0$.

Recall some prominent facts which we use to prove our results:
Fact 1. Let $p(t)=\sum_{r=0}^{n} b_{r} t^{r}$ be a polynomial in real variable t for infinite values of t and each $b_{r} \in A$. If $p(t) \in M$, then each b_{r} lies in M.
Fact 2. If F is a b-generalized derivation on A, then $G=F \pm n I_{i d}$, where n is a positive integer and $I_{i d}$ is an identity map on A, is also a b-generalized derivation on A.

Now we are ready to prove our theorems:
Proof of Theorem 1.2. Fix $x \in G_{1}$, for each n we define the set $U_{n}=\{y \in A \mid$ $F\left((x y)^{n}\right)-x^{n} y^{n} \notin Z(A)$ and $\left.F\left((x y)^{n}\right)-y^{n} x^{n} \notin Z(A)\right\}$. It is easy to show that U_{n} is open. Applications of Baire category theorem yield there exists a positive integer r such that U_{r} is not dense. Thus, for a non empty open set G_{3} in U_{r}^{c} such that either $F\left((x y)^{r}\right)-x^{r} y^{r} \in Z(A)$ or $F\left((x y)^{r}\right)-y^{r} x^{r} \in Z(A)$ for all $y \in G_{3}$. Then $v_{0}+t w \in G_{3}$, where $v_{0} \in G_{3}, w \in A$ and for adequately least real t. Thus, we have

$$
\begin{equation*}
F\left(\left(x\left(v_{0}+t w\right)\right)^{r}\right)-x^{r}\left(v_{0}+t w\right)^{r} \in Z(A) \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
F\left(\left(x\left(v_{0}+t w\right)\right)^{r}\right)-\left(v_{0}+t w\right)^{r} x^{r} \in Z(A) \tag{1.2}
\end{equation*}
$$

Thus at least one of (1.1) and (1.2) is valid for infinitely many t. Suppose (1.1) holds for these t. Then the expression $F\left(\left(x\left(v_{0}+t w\right)\right)^{r}\right)-x^{r}\left(v_{0}+t w\right)^{r}$ can be written as

$$
\begin{aligned}
& F\left(A_{r, 0}\left(x, v_{0}, w\right)\right)-x^{r} B_{r, 0}\left(v_{0}, w\right) \\
& +F\left(A_{r-1,1}\left(x, v_{0}, w\right)\right)-x^{r} B_{r-1,1}\left(v_{0}, w\right) t+\cdots \\
& +F\left(A_{1, r-1}\left(x, v_{0}, w\right)\right)-x^{r} B_{1, r-1}\left(v_{0}, w\right) t^{r-1} \\
& +F\left(A_{0, r}\left(x, v_{0}, w\right)\right)-x^{r} B_{0, r}\left(v_{0}, w\right) t^{r}
\end{aligned}
$$

where $A_{i, j}\left(x, v_{0}, w\right)$ denotes the sum of all terms in which $x v_{0}$ appears exactly i times and $x w$ appears exactly j times in the expansion of $F\left(x\left(v_{0}+t w\right)^{r}\right)$, where i and j are non-negative integers such that $i+j=r$. Similarly, $B_{i, j}\left(v_{0}, w\right)$ is sum of all terms in which v_{0} appears exactly i times and w appears exactly j
times in the expansion of $\left(v_{0}+t w\right)^{r}$, where i and j are non-negative integers such that $i+j=r$. The above expression is a polynomial in t and the coefficient of t^{r} in this polynomial is $F\left((x w)^{r}\right)-x^{r} w^{r}$. Therefore in view of Fact 1, we have $F\left((x w)^{r}\right)-x^{r} w^{r} \in Z(A)$. If (1.2) is holds for these t, then we are forced to conclude that $F\left((x w)^{r}\right)-w^{r} x^{r} \in Z(A)$. Thus, given $x \in G_{1}$ there is a positive integer r depending on w such that for each $w \in A$ either $F\left((x w)^{r}\right)-x^{r} w^{r} \in$ $Z(A)$ or $F\left((x w)^{r}\right)-w^{r} x^{r} \in Z(A)$. Next, fix $y \in A$ and for each positive integer k, set $V_{k}=\left\{v \in A \mid F\left((v y)^{k}\right)-v^{k} y^{k} \notin Z(A)\right.$ and $\left.F\left((v y)^{k}\right)-y^{k} v^{k} \notin Z(A)\right\}$. Each V_{k} is open (as we shown above). If each V_{k} is dense then by the Baire category theorem so is the intersection also but this contrary to what was shown earlier concerning the open set G_{1}. Hence there is an integer $m>1$ and a non empty open subset G_{4} in the complement of V_{m}. If $x_{0} \in G_{4}$ and $y \in A$, then $x_{0}+t u \in G_{4}$ for all sufficiently small real t. Hence for positive integer $m>1$ either

$$
F\left(\left(\left(x_{0}+t u\right) y\right)^{m}\right)-\left(x_{0}+t u\right)^{m} y^{m} \in Z(A)
$$

or

$$
F\left(\left(\left(x_{0}+t u\right) y\right)^{m}\right)-y^{m}\left(x_{0}+t u\right)^{m} \in Z(A)
$$

for each $u \in A$ and $x_{0} \in G_{4}$. Arguing as above we see that either $F\left((u y)^{m}\right)-$ $u^{m} y^{m} \in Z(A)$ or $F\left((u y)^{m}\right)-y^{m} u^{m} \in Z(A)$ for each $u \in A$.

Now let $S_{k}, k>1$, be the set of $y \in A$ such that for each $w \in A$ either $F\left((w y)^{k}\right)-w^{k} y^{k} \in Z(A)$ or $F\left((w y)^{k}\right)-y^{k} w^{k} \in Z(A)$, then the union of S_{k} will be A. It can be easily prove that each S_{k} is closed. Hence again by Baire category theorem some $S_{l}, l>1$, must have a non empty open subset G_{5}. Let $y_{0} \in G_{5}$, for all sufficiently small real t and each $z \in A$ either

$$
F\left(\left(w\left(y_{0}+t z\right)\right)^{l}\right)-w^{l}\left(y_{0}+t z\right)^{l} \in Z(A)
$$

or

$$
F\left(\left(w\left(y_{0}+t z\right)\right)^{l}\right)-\left(y_{0}+t z\right)^{l} w^{l} \in Z(A) .
$$

By earlier arguments, we have for each $w, z \in A$ either $F\left((w z)^{l}\right)-w^{l} z^{l} \in Z(A)$ or $F\left((w z)^{l}\right)-z^{l} w^{l} \in Z(A)$. Next, since A is unital then, for all real t either

$$
F\left(((e+t x) y)^{n}\right)-(e+t x)^{n} y^{n} \in Z(A)
$$

or

$$
F\left(((e+t x) y)^{n}\right)-y^{n}(e+t x)^{n} \in Z(A)
$$

for all $x, y \in A$. Hence taking coefficient of t in the expansion of above equations and using Fact 1 , we get either

$$
\begin{equation*}
F\left(x y^{n}+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)-n x y^{n} \in Z(A) \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
F\left(x y^{n}+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)-n y^{n} x \in Z(A) \tag{1.4}
\end{equation*}
$$

for all $x, y \in A$. Now, taking $F\left[(y(e+t x))^{n}\right]$ in instead of $F\left[((e+t x) y)^{n}\right]$, we see that either

$$
\begin{equation*}
F\left(y^{n} x+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)-n x y^{n} \in Z(A) \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
F\left(y^{n} x+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)-n y^{n} x \in Z(A) \tag{1.6}
\end{equation*}
$$

for all $x, y \in A$. Then at least one of pair of equations $\{(1.3),(1.5)\},\{(1.3)$, $(1.6)\},\{(1.4),(1.5)\}$ and $\{(1.4),(1.6)\}$ must hold. On combining the equations in these pairs, we get either

$$
F\left(\left[x, y^{n}\right]\right) \in Z(A) \text { for all } x, y \in A
$$

Or

$$
F\left(\left[x, y^{n}\right]\right) \pm n\left[x, y^{n}\right] \in Z(A) \text { for all } x, y \in A
$$

Replacing y by $e+t y$ in above equation and using same arguments as we have used above, we obtain either

$$
\begin{equation*}
F([x, y]) \in Z(A) \text { for all } x, y \in A \tag{1.7}
\end{equation*}
$$

Or

$$
\begin{equation*}
F([x, y]) \pm n[x, y] \in Z(A) \text { for all } x, y \in A \tag{1.8}
\end{equation*}
$$

First we consider the case

$$
F([x, y]) \in Z(A) \text { for all } x, y \in A
$$

This can be written as

$$
[F([x, y]), w]=0 \text { for all } x, y, w \in A
$$

Replacing y by $y x$ in above relation, we obtain

$$
[F([x, y]) x+b[x, y] d(x), w]=0 \text { for all } x, y, w \in A
$$

This implies that
(1.9) $\quad F([x, y])[x, w]+b[x, y][d(x), w]+b[[x, y], w] d(x)+[b, w][x, y] d(x)=0$ for all $x, y, w \in A$. Replacing x by $x+z$, where $z \in Z(A)$, we get
(1.10) $F([x, y])[x, w]+b[x, y][d(x), w]+b[[x, y], w] d(z)+[b, w][x, y] d(z)=0$ for all $x, y, w \in A$ and for all $z \in Z(A)$. In view of last two relations, we get
$(b[[x, y], w]+[b, w][x, y]) d(z)=0$ for all $x, y, w \in A$ and $z \in Z(A)$.
If $d(z) \neq 0$, then

$$
\begin{equation*}
b[[x, y], w]+[b, w][x, y]=0 \text { for all } x, y, w \in A \tag{1.11}
\end{equation*}
$$

For $w=b$, above relations reduce into

$$
b[[x, y], b]=0 \text { for all } x, y \in A
$$

Since $b \neq 0$, so we have $[[x, y], b]=0$ for all $x, y \in A$, and hence $b \in Z(A)$. Using this in (1.11), we get $b[[x, y], w]=0$ for all $x, y, w \in A$. This implies A is commutative. If $d(z)=0$, then in view of (1.10), we have

$$
F([x, y])[x, w]+b[x, y][d(x), w]=0
$$

for all $x, y, w \in A$. Taking $x=w$ in above expression gives

$$
b[w, y][d(w), w]=0
$$

for all $x, w \in A$. This further implies that either A is commutative or $[d(w), w]$ $=0$ for all $w \in A$. In view of [9, Theorem 2], either A is commutative or $d=0$. Since A is noncommutative, so we have $d=0$, i.e., $F(x)=a x$ for all $x \in A$.

Now we consider the case

$$
F([x, y]) \pm n[x, y] \in Z(A) \text { for all } x, y \in A
$$

In view of Fact 2, it follows that $G([x, y]) \in Z(A)$ for all $x, y \in A$. Proceeding as above we get the required result. This completes the proof.
Proof of Theorem 1.3. Proceeding same as above, we arrive at

$$
\begin{equation*}
F\left(x y^{n}+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)+n x y^{n} \in Z(A) \tag{1.12}
\end{equation*}
$$

or

$$
\begin{equation*}
F\left(x y^{n}+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)-n y^{n} x \in Z(A) \tag{1.13}
\end{equation*}
$$

for all $x, y \in A$. Now, taking $F\left[(y(e+t x))^{n}\right]$ in instead of $F\left[((e+t x) y)^{n}\right]$, we see that either

$$
\begin{equation*}
F\left(y^{n} x+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)+n x y^{n} \in Z(A) \tag{1.14}
\end{equation*}
$$

or

$$
\begin{equation*}
F\left(y^{n} x+\sum_{k=1}^{n-1} y^{k} x y^{n-k}\right)-n y^{n} x \in Z(A) \tag{1.15}
\end{equation*}
$$

for all $x, y \in A$. Then at least one of pair of equations $\{(1.12),(1.14)\},\{(1.12)$, $(1.15)\},\{(1.13),(1.14)\}$ and $\{(1.13),(1.6)\}$ must hold. On combining the equations in these pairs, we get either

$$
\begin{gathered}
F\left(\left[x, y^{n}\right]\right) \in Z(A) \text { for all } x, y \in A, \text { or } \\
F\left(\left[x, y^{n}\right]\right) \pm n\left(x \circ y^{n}\right) \in Z(A) \text { for all } x, y \in A .
\end{gathered}
$$

Replacing y by $e+t y$ in above equation and using same arguments as we have used above, we obtain either

$$
\begin{equation*}
F([x, y]) \in Z(A) \text { for all } x, y \in A \text {, or } \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
F([x, y]) \pm n(x \circ y) \in Z(A) \text { for all } x, y \in A \tag{1.17}
\end{equation*}
$$

Equation (1.16) is the same as (1.7). So we have the required conclusion from above. We deal only with (1.17). Taking $x=y$ in (1.17), we obtain $2 n x \in Z(A)$ for all $x \in R$. This implies A is commutative. Hence the result.

Acknowledgment. The author would like to express his sincere thanks to the learned referee for his/her valuable comments to improve the paper.

References

[1] S. Ali and A. N. Khan, On commutativity of Banach algebras with derivations, Bull. Aust. Math. Soc. 91 (2015), no. 3, 419-425. https://doi.org/10.1017/ S0004972715000118
[2] M. Ashraf and B. A. Wani, On commutativity of rings and Banach algebras with generalized derivations, Adv. Pure Appl. Math. 10 (2019), no. 2, 155-163. https: //doi.org/10.1515/apam-2017-0024
[3] H. E. Bell, On a commutativity theorem of Herstein, Arch. Math. (Basel) 21 (1970), 265-267. https://doi.org/10.1007/BF01220913
[4] H. E. Bell, On the commutativity of prime rings with derivation, Quaest. Math. 22 (1999), no. 3, 329-335. https://doi.org/10.1080/16073606.1999.9632085
[5] I. N. Herstein, Power maps in rings, Michigan Math. J. 8 (1961), 29-32. http: //projecteuclid.org/euclid.mmj/1028998511
[6] I. N. Herstein, A remark on rings and algebras, Michigan Math. J. 10 (1963), 269-272. http://projecteuclid.org/euclid.mmj/1028998910
[7] A. N. Khan, S. Ali, H. Alhazmi, and V. De Filippis, On skew derivations and generalized skew derivations in Banach algebras, Quaest. Math. 43 (2020), no. 9, 1259-1272. https: //doi.org/10.2989/16073606.2019.1607604
[8] M. T. Koşan and T.-K. Lee, b-generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc. 96 (2014), no. 3, 326-337. https://doi.org/10.1017/ S1446788713000670
[9] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
[10] B. Prajapati and S. K. Tiwari, Some commutativity theorems on Banach algebras, Rend. del Circ. Mate. di Palermo Series 2 (2020) (preprint). https://doi.org/10.1007/ s12215-020-00543-0
[11] N. Rehman, On continuous linear generalized derivation in rings and Banach algebras, Asian-Eur. J. Math. 14 (2021), no. 2, 2150020, 8 pp. https://doi.org/10.1142/ S1793557121500200
[12] G. S. Sandhu, D. Kumar, D. K. Camci, and N. Aydin, On derivations satisfying certain identities on rings and algebras, Facta Univ. Ser. Math. Inform. 34 (2019), no. 1, 85-99.
[13] R. K. Sharma and B. Prajapati, Generalized derivations and commutativity of prime Banach algebras, Beitr. Algebra Geom. 58 (2017), no. 1, 179-187. https://doi.org/ 10.1007/s13366-016-0306-6
[14] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), no. 1, 47-52. https://doi.org/10.2307/2048360
[15] J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. Ser. III 26(46) (1991), no. 1-2, 83-88.
[16] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), no. 4, 877-884. https://doi.org/10.2307/2159463
[17] B. Yood, On commutativity of unital Banach algebras, Bull. London Math. Soc. 23 (1991), no. 3, 278-280. https://doi.org/10.1112/blms/23.3.278

Husain Alhazmi
Faculty of Science
Department of Mathematics
King Abdulaziz University
Jeddah, Saudi Arabia
Email address: hsalhazmi@kau.edu.sa

[^0]: Received December 28, 2020; Accepted May 6, 2021.
 2010 Mathematics Subject Classification. 16W25, 46J10.
 Key words and phrases. Banach algebra, b-generalized derivation, right Martindale quotient ring.

