• Title/Summary/Keyword: rhodamine-B

Search Result 231, Processing Time 0.022 seconds

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber (전기방사를 이용하여 합성한 BiVO4 나노섬유의 미세구조와 광촉매 특성에 하소 온도가 미치는 영향)

  • Ji, Myeongjun;Kim, Jeong Hyun;Ryu, Cheol-Hui;Ko, Yun Taek;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.

Preparation of Bi/Bi2MoO6 Plasmonic Photocatalyst with High Photocatalytic Activity Under Visible Light Irradiation

  • Zou, Chentao;Yang, Zhiyuan;Liang, Mengjun;He, Yunpeng;Yang, Yun;Yang, Shuijin
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850127.1-1850127.13
    • /
    • 2018
  • Bi metal deposited on $Bi_2MoO_6$ composite photocatalysts have been successfully synthesized via a simple reduction method at room temperature with using $NaBH_4$ as the reducing agent. The photocatalytic activity of the composite was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) solution under visible light. The rate constant of $Bi/Bi_2MoO_6$ composite to RhB is 10.8 times that of $Bi_2MoO_6$, and the degradation rate constant of BPA is 6.9 times of that of $Bi_2MoO_6$. Nitrogen absorption-desorption isotherm proved that the increase of specific surface area is one of the reasons for the improvement of photocatalytic degradation activity of $Bi/Bi_2MoO_6$ composites. The higher charge transfer efficiency of $Bi/Bi_2MoO_6$ is found through the characterization of the photocurrent and impedance, which are attributed to the surface plasmon resonance (SPR) effect produced by the introduction of the metal Bi monomer in the composite. Free radical capture experiments proved that cavitation is the main active species. Based on the above conclusions, a possible mechanism of photocatalytic degradation is proposed.

Few-Layered MoS2 Nanoparticles Loaded TiO2 Nanosheets with Exposed {001} Facets for Enhanced Photocatalytic Activity

  • Chen, Chujun;Xin, Xia;Zhang, Jinniu;Li, Gang;Zhang, Yafeng;Lu, Hongbing;Gao, Jianzhi;Yang, Zhibo;Wang, Chunlan;He, Ze
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850129.1-1850129.10
    • /
    • 2018
  • To improve the high charge carrier recombination rate and low visible light absorption of {001} facets exposed $TiO_2$ [$TiO_2(001)$] nanosheets, few-layered $MoS_2$ nanoparticles were loaded on the surfaces of $TiO_2(001)$ nanosheets by a simple photodeposition method. The photocatalytic activities towards Rhodamine B (RhB) were investigated. The results showed that the $MoS_2-TiO_2(001)$ nanocomposites exhibited much enhanced photocatalytic activities compared with the pure $TiO_2(001)$ nanosheets. At an optimal Mo/Ti molar ratio of 25%, the $MoS_2-TiO_2(001)$ nanocomposites displayed the highest photocatalytic activity, which took only 30 min to degrade 50 mL of RhB (50 mg/L). The active species in the degradation reaction were determined to be $h^+$ and $^{\bullet}OH$ according to the free radical trapping experiments. The reduced charge carrier recombination rate, enhanced visible light utilization and increased surface areas contributed to the enhanced photocatalytic performances of the 25% $MoS_2-TiO_2(001)$ nanocomposites.

Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland (시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성)

  • Choi, Dong-Ho;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kim, Dong-Sup;Joh, Seong-Ju;Park, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.425-437
    • /
    • 2007
  • Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

A Study on the Mixing Characteristics in Complex Turbulent Flow by a Laser Induced Fluorescence Method (레이저 형광여기법(LIF)를 이용한 복잡 난류유동장의 혼합특성에 관한 연구)

  • Kim, Kyung-Chun;Jeong, Eun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.542-547
    • /
    • 2001
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera can be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration in each region after the dye infusion reflects the large scale mixing while the followed slow decay reveals the small scale mixing. The temporal change of concentration probability functions conjectures the two sequential processes in the batch type mixing. An inactive column of water existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

  • PDF

Highly Sensitive Multichannel Interdigitated Capacitor Based Bitterness Sensor

  • Khan, Md. Rajibur Rahaman;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we propose a multichannel interdigitated capacitor (IDC) sensor for detecting the bitterness of coffee. The operating principle of the device is based on the variation in capacitance of a sensing membrane in contact with a bitter solution. Four solvatochromic dyes, namely, Nile red, Reichardt's dye, auramine-O, and rhodamine-B, were mixed with polyvinylchloride (PVC) and N,N-dimethylacetamide (DMAC), to create four different types of bitter-sensitive solutions. These solutions were then individually inserted into four interdigitated electrodes (IDEs) using a spin coater, to prepare four distinct IDC sensors. The sensors are capable of detecting bitterness-inducing chemical compounds in any solution, at concentrations of approximately $1{\mu}M$ to 1 M. The sensitivity of the IDC bitterness sensor containing the Reichardt's dye sensing-membrane was approximately 1.58 nF/decade. The multichannel sensor has a response time of approximately 6 s, and an approximate recovery time of 5 s. The proposed sensor offers a stable sensing response and linear sensing performance over a wide measurement range, with a correlation coefficient ($R^2$) of approximately 0.972.

Efficient Labeling of Porcine Hematopoietic Cells by Fluorescence-Conjugated Nanoparticles

  • Lee, Hyun-Joo;Park, Eun-Ji;Lee, Yong-Soo;Park, Sung-Won;Kim, Jae-Hwan;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • Nanotechnology is currently receiving considerable attention in various fields of biotechnology. The uptake of nanoparticles by cells for labeling and tracking is a critical process for many biomedical therapeutic applications. However, nanoparticle labeling of porcine hematopoietic cells has not been demonstrated so far. In the present study, silica-coated nanoparticles conjugated with rhodamine B isothiocyanate (SR-RITC) were used to investigate the uptake of nanoparticles by porcine hematopoietic cells. Flow cytometric and confocal microscopic analyses reveled that the cells were efficiently internalized by the silica-coated nanoparticles. Furthermore, biocompatibility tests demonstrated that the SR nanoparticles were not cytotoxic, and they had no impact on proliferation. Our study demonstrates that silica-coated nanoparticles are taken up very rapidly and with high efficiency into porcine hematopoietic cells, with no apparent deleterious effects. Therefore, silica-coated nanoparticles appear to be a promising tool for tracking porcine hematopoietic cells.

Electrochemical, Antifungal, Antibacterial and DNA Cleavage Studies of Some Co(II), Ni(II), Cu(II) and Zn(II)-Copolymer Complexes

  • Dhanaraj, C. Justin;Nair, M. Sivasankaran
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • Cyclic voltammetric measurements were performed for Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride) (L) and Ni(II) and Cu(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-methacrylic acid) ($L^1$). The in vitro biological screening effects of the investigated compounds were tested against the fungal species including Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans and bacterial species including Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by well diffusion method. A comparative study of inhibition values of the copolymers and their complexes indicates that the complexes exhibit higher antimicrobial activity. Copper ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. The nuclease activity of the above metal complexes were assessed by gel electrophoresis assay and the results show that the copper complexes can cleave pUC18 DNA effectively in presence of hydrogen peroxide compared to other metal complexes. The degradation experiments using Rhodamine B dye indicate that the hydroxyl radical species are involved in the DNA cleavage reactions.

Photocatalytic Activity of Electrospun PAN/TiO2 Nanofibers in Dye Photodecomposition

  • Ji, Byung Chul;Bae, Sang Su;Rabbani, Mohammad Mahbub;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.94-101
    • /
    • 2013
  • Poly(acrylonitrile) (PAN) nanofibers containing different amounts of titanium dioxide ($TiO_2$) have been prepared by electrospinning technique. Photocatalytic activity of these electrospun PAN/$TiO_2$ nanofibers and the effect of $TiO_2$ content on the photocatalytic efficiency of PAN/$TiO_2$ nanofibers have been evaluated by monitoring the photodecomposition of fluorescein dye, rhodamine B and methylene blue under UV irradiation with respect to irradiation time. Moreover, the effect of hydrogen peroxide ($H_2O_2$) on the photocatalytic behavior of PAN/$TiO_2$ nanofibers has also been investigated. The results showed that PAN/$TiO_2$ nanofibers are effective photocatalyst and their photocatalytic efficiency increases with the increase of $TiO_2$ content in the PAN/$TiO_2$ nanofibers. It is also observed that the presence of $H_2O_2$ significantly enhances the photocatalytic ability of PAN/$TiO_2$ nanofibers. The morphology and the photocatalytic behavior of the PAN/$TiO_2$ nanofibers containing different amounts of $TiO_2$ nanoparticles have been investigated by field-emission scanning electron microscopy (FE-SEM) and UV/Visible spectroscopy, respectively.