Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.3.226

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber  

Ji, Myeongjun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kim, Jeong Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Ryu, Cheol-Hui (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Ko, Yun Taek (R&D Center, Coway Entech)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.27, no.3, 2020 , pp. 226-232 More about this Journal
Abstract
Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.
Keywords
$BiVO_4$; Electrospinning; Calcination; Temperature; Photocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Wetchakun, N. Wetchakun and S. Sakulsermsuk: J. Ind. Eng. Chem., 71 (2019) 19.   DOI
2 J. Fu, J. Yu, C. Jiang and B. Cheng: Adv. Energy Mater., 8 (2017) 1701503.   DOI
3 S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun and J. Sun: RSC Adv., 5 (2015) 14610.   DOI
4 W. Zhang, H. He, Y. Tian, H. Li, K. Lan, L. Zu, Y. Xia, L. Duan, W. Li and D. Zhao: Nano Energy, 66 (2019) 104113.   DOI
5 J. Chen, F. Qiu, W. Xu, S. Cao and H. Zhu: Appl. Catal. A, 495 (2015) 131.   DOI
6 Y. Lin, C. Lu and C. Wei: J. Alloy Compd., 781 (2019) 56.   DOI
7 M. Hojamberdiev, G. Zhu, Z. C. Kadirova, J. Han, J. Liang, J. Zhou, X. Wei and P. Liu: Mater. Chem. Phys., 165 (2015) 188.   DOI
8 R. Yang, Y. Fan and R. Zhu: Mater. Res. Bull., 124 (2020) 110756.   DOI
9 I. Khan, S. Ali, M. Mansha and A. Qurashi: Ultrason. Sonochem., 36 (2017) 386.   DOI
10 M. M. Sajid, N. Amin, N. A. Shad, S. B. Khan, Y. Javed and Z. Zhang: Mater. Sci. Eng. B, 242 (2019) 83.   DOI
11 Y. Nosaka and A. Y. Nosaka: Chem. Rev., 117 (2017) 11302.   DOI
12 B. Weng, S. Liu, Z.-R. Tang and Y.-J. Xu: RSC Adv., 4 (2014) 12685.   DOI
13 J. Xue, T. Wu, Y. Dai and Y. Xia: Chem. Rev., 119 (2019) 5298.   DOI
14 W.-S. Chen, D.-A. Huang, H.-C. Chen, T.-Y. Shie, C.-H. Hsieh, J.-D. Liao and C. Kuo: Cryst. Growth Des., 9 (2009) 4070.   DOI
15 C. Eid, D. Luneau, V. Salles, R. Asmar, Y. Monteil, A. Khoury and A. Brioude: J. Phys. Chem. C, 115 ( 2011) 17643.   DOI
16 C. S. Turchi and D. F. Ollis: J. Catal., 122 (1990) 178.   DOI
17 G.-D. Lim, J.-H. Yoo, M. Ji and Y.-I. Lee: J. Alloy Compd., 806 (2019) 1060.   DOI
18 L. V. Bora and R. K. Mewada: Renew. Sust. Energ. Rev., 76 (2017) 1393.   DOI