Browse > Article
http://dx.doi.org/10.5764/TCF.2013.25.2.94

Photocatalytic Activity of Electrospun PAN/TiO2 Nanofibers in Dye Photodecomposition  

Ji, Byung Chul (Department of Textile System Engineering, Kyungpook National University)
Bae, Sang Su (Department of Textile System Engineering, Kyungpook National University)
Rabbani, Mohammad Mahbub (Department of Bio-fibers and Materials Science, Kyungpook National University)
Yeum, Jeong Hyun (Department of Bio-fibers and Materials Science, Kyungpook National University)
Publication Information
Textile Coloration and Finishing / v.25, no.2, 2013 , pp. 94-101 More about this Journal
Abstract
Poly(acrylonitrile) (PAN) nanofibers containing different amounts of titanium dioxide ($TiO_2$) have been prepared by electrospinning technique. Photocatalytic activity of these electrospun PAN/$TiO_2$ nanofibers and the effect of $TiO_2$ content on the photocatalytic efficiency of PAN/$TiO_2$ nanofibers have been evaluated by monitoring the photodecomposition of fluorescein dye, rhodamine B and methylene blue under UV irradiation with respect to irradiation time. Moreover, the effect of hydrogen peroxide ($H_2O_2$) on the photocatalytic behavior of PAN/$TiO_2$ nanofibers has also been investigated. The results showed that PAN/$TiO_2$ nanofibers are effective photocatalyst and their photocatalytic efficiency increases with the increase of $TiO_2$ content in the PAN/$TiO_2$ nanofibers. It is also observed that the presence of $H_2O_2$ significantly enhances the photocatalytic ability of PAN/$TiO_2$ nanofibers. The morphology and the photocatalytic behavior of the PAN/$TiO_2$ nanofibers containing different amounts of $TiO_2$ nanoparticles have been investigated by field-emission scanning electron microscopy (FE-SEM) and UV/Visible spectroscopy, respectively.
Keywords
electrospinning; poly(acrylonitrile); titanium dioxide; nanofibers; photocatalysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. K. Nataraj, K. S. Yang, and T. M. Aminabhavi, Polyacrylonitrile-based Nanofibers - A State of the Art Review, Progress in Polymer Science, 37(3), 487(2012).   DOI   ScienceOn
2 H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker, A. Greiner, and S. Z. D. Cheng, Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-aligned Multiwall Carbon Nanotubes, Chem. Mater., 17(5), 967(2005).   DOI   ScienceOn
3 T. J. Sill and H. A. Recum, Electrospinning: Applications in Drug Delivery and Tissue Engineering, Biomaterials, 29(13), 1989(2008).   DOI   ScienceOn
4 D. H. Reneker and I. Chun, Nanometer Diameter Fibres of Polymer, Produced by Electrospinning, Nanotechnology, 7(3), 216(1996).   DOI   ScienceOn
5 D. Li and Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel, Adv. Mater., 16(14), 1151(2004).   DOI   ScienceOn
6 X. J. Han, Z. M. Huang, C. L. He, L. Liu, X. J. Han, and Q. S. Wu, Coaxial Electrospinning of PC(shell)/PU(core) Composite Nanofibers for Textile Application, Polym. Composite., 27(4), 381(2006).   DOI   ScienceOn
7 Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, A Review on Polymer Nanofibers by Electro-spinning Applications in Nanocomposites, Compos. Sci. Technol., 63(15), 2223(2003).   DOI   ScienceOn
8 X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, Electrospun Nano-fibrous Membranes for Highly Sensitive Optical Sensors, Nano Lett., 2(11), 1273(2002).   DOI   ScienceOn
9 W. Cui, X. Li, S. Zhou, and J. Weng, Investigation on Process Parameters of Electrospinning System through Orthogonal Experimental Design, J. Appl. Polym. Sci., 103(5), 3105(2007).   DOI   ScienceOn
10 X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hisao, and B. Chu, Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes, Polymer, 43(16), 4403(2002).   DOI   ScienceOn
11 H. W. Lee, M. R. Karim, J. H. Park, H. D. Ghim, J. H. Choi, K. Kim, Y. Deng, and J. H. Yeum, Poly(vinyl alcohol)/Chitosan Oligosaccharide Blend Submicrometer Fibers Prepared from Aqueous Solutions by the Electrospinning Method, J. Appl. Polym. Sci., 111(1), 132(2009).   DOI   ScienceOn
12 J. H. He, Y. Q. Wan, and J. Y. Yu, Effect of Concentraion on Electrospun Polyacrylonitrile(PAN) Nanofibers, Fibers and Polymers, 9(2), 140(2008).   DOI   ScienceOn
13 Y. Cai, Q. Wang, Q. Wei, Q. You, F. Huang, L. Song, Y. Hu, and W. Gao, Structure, Thermal, and Antibacterial Properties of Polyacrylonitrile/Ferric Chloride Nanocomposite Fibers by Electrospinning, International J. Polymer Anal. Charact., 15(2), 110(2010).   DOI   ScienceOn
14 J. Y. Choi and J. H. Yeum, Effect of Inorganic Nanomaterials on the Morphology and Thermal Properties of PVA Nanocomposite Nanowebs, Textile Coloration and Finishing, 23(2), 83(2011).   과학기술학회마을   DOI   ScienceOn
15 J. H. Yang, N. S. Yoon, I. K. Kim and J. H. Yeum, Fabrication of Waterproof and Moisture-permeable Polyurethane Nanofiber Multi-Membrane, Textile Coloration and Finishing, 23(2), 107(2011).   과학기술학회마을   DOI   ScienceOn
16 S. S. Chin, K. Chiang, and A. G. Fane, The Stability of Polymeric Membranes in a $TiO_2$ Photocatalysis Process, J. Membrane Science, 275(1/2), 202(2006).   DOI   ScienceOn
17 X. Chen and S. S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chemical Reviews, 107(7), 2891(2007).   DOI   ScienceOn
18 A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95(3), 735(1995).   DOI   ScienceOn
19 K. Shankar, J. I. Basham, and N. K. Allam, Recent Advances In the Use of $TiO_2$ Nanotube and Nanowire Arrays for Oxidative Photoelectro Chemistry, J. Physical Chemistry C, 113(16), 6327(2009).   DOI   ScienceOn
20 J. S. Im, M. I. Kim, and Y. S. Lee, Preparation of PAN-based Electrospun Nanofiber Webs Containing $TiO_2$ for Photocatalytic Degradation, Materials Letters, 62(21-22), 3652(2008).   DOI   ScienceOn
21 J. Li, W. Ma, C. Chen, J. Zhao, H. Zhu, and X. Gao, Photodegradation of Dye Pollutants on One-dimensional $TiO_2$ Nanoparticles under UV and Visible Irradiation, J. Molecular Catalysis A: Chemical, 261(1), 131(2007).   DOI   ScienceOn
22 S. H. Hwang, C. Kim, and J. Jang, $SnO_2$ Nanoparticle Embedded $TiO_2$ Nanofibers - Highly Efficient Photocatalyst for the Degradation of Rhodamine B, Catalysis Communications, 12(11), 1037(2011).   DOI   ScienceOn
23 P. Wilhelm and D. Stephan, Photodegradation of Rhodamine B in Aqueous Solution via $SiO_2$@ $TiO_2$ Nano-spheres, J. Photochemistry and Photobiology A: Chemistry, 185(1), 19(2007).   DOI   ScienceOn
24 C. Prahsarn, W. Klinsukhon, and N. Roungpaisan, Electrospinning of PAN/DMF/$H_2O$ Containing $TiO_2$ and Photocatalytic Activity of their Webs, Materials Letters, 65(15-16), 2498(2011).   DOI   ScienceOn